Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(44): 28359-28363, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36320534

RESUMO

Dry reforming of methane (DRM) is a promising reaction able to convert greenhouse gases (CO2 and CH4) into syngas: an important chemical feedstock. Several difficulties limit the applicability of DRM in conventional thermal catalytic reactions; it is an endothermic reaction that requires high temperatures, resulting in high carbon deposition and a low H2/CO ratio. Catalysis with the application of an electric field (EF) at low temperatures can resolve these difficulties. Synergistic effects with alloys have also been reported for reactions promoted by the application of EF. Therefore, the synergistic effects of low-temperature DRM and Ni-Fe bimetallic catalysts were investigated using various methods and several characterisations (XRD, XPS, FE-STEM, etc.), which revealed that Ni-Fe binary catalysts show high performance in low-temperature DRM. In particular, the Ni0.8Fe0.2 catalyst supported on CeO2 was found to carry out DRM in EF effectively and selectively by virtue of its bimetallic characteristics.

2.
RSC Adv ; 12(15): 9036-9043, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35424901

RESUMO

With increasing expectations for carbon neutrality, dry reforming is anticipated for direct conversion of methane and carbon dioxide: the main components of biogas. We have found that dry reforming of methane in an electric field using a Pt/CeO2 catalyst proceeds with sufficient rapidity even at a low temperature of about 473 K. The effect of the electric field (EF) on dry reforming was investigated using kinetic analysis, in situ DRIFTs, XPS, and DFT calculation. In situ DRIFTs and XPS measurements indicated that the amount of carbonate, which is an adsorbed species of CO2, increased with the application of EF. XPS measurements also confirmed the reduction of CeO2 by the reaction of surface oxygen and CH4. The reaction between CH4 molecules and surface oxygen was promoted at the interface between Pt and CeO2.

3.
RSC Adv ; 10(25): 14487-14492, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497172

RESUMO

Catalytic methane steam reforming was conducted at low temperature using a Pd catalyst supported on Ce1-x M x O2 (x = 0 or 0.1, M = Ca, Ba, La, Y or Al) oxides with or without an electric field (EF). The effects of the catalyst support on catalytic activity and surface proton hopping were investigated. Results show that Pd/Al-CeO2 (Pd/Ce0.9Al0.1O2) showed higher activity than Pd/CeO2 with EF, although their activity was identical without EF. Thermogravimetry revealed a larger amount of H2O adsorbed onto Pd/Al-CeO2 than onto Pd/CeO2, so Al doping to CeO2 contributes to greater H2O adsorption. Furthermore, electrochemical conduction measurements of Pd/Al-CeO2 revealed a larger contribution of surface proton hopping than that for Pd/CeO2. This promotes the surface proton conductivity and catalytic activity during EF application.

4.
RSC Adv ; 10(44): 26418-26424, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35519772

RESUMO

Low temperature (<500 K) methane steam reforming in an electric field was investigated over various catalysts. To elucidate the factors governing catalytic activity, activity tests and various characterization methods were conducted over various oxides including CeO2, Nb2O5, and Ta2O5 as supports. Activities of Pd catalysts loaded on these oxides showed the order of CeO2 > Nb2O5 > Ta2O5. Surface proton conductivity has a key role for the activation of methane in an electric field. Proton hopping ability on the oxide surface was estimated using electrochemical impedance measurements. Proton transport ability on the oxide surface at 473 K was in the order of CeO2 > Nb2O5 > Ta2O5. The OH group amounts on the oxide surface were evaluated by measuring pyridine adsorption with and without H2O pretreatment. Results indicate that the surface OH group concentrations on the oxide surface were in the order of CeO2 > Nb2O5 > Ta2O5. These results demonstrate that the surface concentrations of OH groups are related to the proton hopping ability on the oxide surface. The concentrations reflect the catalytic activity of low-temperature methane steam reforming in the electric field.

5.
Chem Commun (Camb) ; 55(47): 6693-6695, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31089596

RESUMO

Methane activation on diluted metal ensembles is a challenging task in the field of alloy chemistry. This report describes that synergy between an electric field and Pd-Zn alloy allows improved catalytic activities in the steam reforming of methane. Because of surface protonics, Pd-Pd ensembles are no longer needed. Ligand effects facilitate methane conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...