Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 377: 114781, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636773

RESUMO

Chronic hypoxia in utero causes intrauterine growth restriction (IUGR) of the fetus. IUGR infants are known to be at higher risk for neurodevelopmental disorders, but the mechanism is unclear. In this study, we analyzed the structure of the cerebral cortex using IUGR model rats generated through a reduced uterine perfusion pressure operation. IUGR rats exhibited thinner cerebral white matter and enlarged lateral ventricles compared with control rats. Expression of neuron cell markers, Satb2, microtubule-associated protein (MAP)-2, α-tubulin, and nestin was reduced in IUGR rats, indicating that neurons were diminished at various developmental stages in IUGR rats, from neural stem cells to mature neurons. However, there was no increase in apoptosis in IUGR rats. Cells positive for Ki67, a marker of cell proliferation, were reduced in neurons and all glial cells of IUGR rats. In primary neuron cultures, axonal elongation was impaired under hypoxic culture conditions mimicking the intrauterine environment of IUGR infants. Thus, in IUGR rats, chronic hypoxia in utero suppresses the proliferation of neurons and glial cells as well as axonal elongation, resulting in cortical thinning and enlarged lateral ventricles. Thrombopoietin (TPO), a platelet growth factor, inhibited the decrease in neuron number and promoted axon elongation in primary neurons under hypoxic conditions. Intraperitoneal administration of TPO to IUGR rats resulted in increases in the number of NeuN-positive cells and the area coverage of Satb2. In conclusion, suppression of neuronal proliferation and axonal outgrowth in IUGR rats resulted in cortical thinning and enlargement of lateral ventricles. TPO administration might be a novel therapeutic strategy for treating brain dysmaturation in IUGR infants.


Assuntos
Proliferação de Células , Retardo do Crescimento Fetal , Crescimento Neuronal , Neurônios , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Trombopoetina , Animais , Retardo do Crescimento Fetal/patologia , Ratos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Feminino , Proliferação de Células/efeitos dos fármacos , Gravidez , Crescimento Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Células Cultivadas , Animais Recém-Nascidos , Córtex Cerebral/patologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo
2.
Biochem Biophys Res Commun ; 708: 149789, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38513475

RESUMO

The tumor suppressor p53 prevents cancer development by regulating dozens of target genes with diverse biological functions. Although numerous p53 target genes have been identified to date, the dynamics and function of the regulatory network centered on p53 have not yet been fully elucidated. We herein identified inhibitor of DNA-binding/differentiation-3 (ID3) as a direct p53 target gene. p53 bound the distal promoter of ID3 and positively regulated its transcription. ID3 expression was significantly decreased in clinical lung cancer tissues, and was closely associated with overall survival outcomes in these patients. Functionally, ID3 deficiency promoted the metastatic ability of lung cancer cells through its effects on the transcriptional regulation of CDH1. Furthermore, the ectopic expression of ID3 in p53-knockdown cells restored E-cadherin expression. Collectively, the present results demonstrate that ID3 plays a tumor-suppressive role as a downstream effector of p53 and impedes lung cancer cell metastasis by regulating E-cadherin expression.


Assuntos
Neoplasias Pulmonares , Humanos , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Neurochem Res ; 49(3): 800-813, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38112974

RESUMO

Therapeutic hypothermia (TH) provides neuroprotection. However, the cellular mechanisms underlying the neuroprotective effects of TH are not fully elucidated. Regulation of microglial activation has the potential to treat a variety of nervous system diseases. Transient receptor potential vanilloid 4 (TRPV4), a nonselective cation channel, is activated by temperature stimulus at 27-35 °C. Although it is speculated that TRPV4 is associated with the neuroprotective mechanisms of TH, the role of TRPV4 in the neuroprotective effects of TH is not well understood. In the present study, we investigated whether hypothermia attenuates microglial activation via TRPV4 channels. Cultured microglia were incubated under normothermic (37 °C) or hypothermic (33.5 °C) conditions following lipopolysaccharide (LPS) stimulation. Hypothermic conditions suppressed the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and the number of phagocytic microglia. AMP-activated protein kinase (AMPK)-NF-κB signaling was inhibited under hypothermic conditions. Furthermore, hypothermia reduced neuronal damage induced by LPS-treated microglial cells. Treatment with TRPV4 antagonist in normothermic culture replicated the suppressive effects of hypothermia on microglial activation and microglia-induced neuronal damage. In contrast, treatment with a TRPV4 agonist in hypothermic culture reversed the suppressive effect of hypothermia. These findings suggest that TH suppresses microglial activation and microglia-induced neuronal damage via the TRPV4-AMPK-NF-κB pathway. Although more validation is needed to consider differences according to age, sex, and specific central nervous system regions, our findings may offer a novel therapeutic approach to complement TH.


Assuntos
Antineoplásicos , Hipotermia , Fármacos Neuroprotetores , Humanos , NF-kappa B/metabolismo , Microglia/metabolismo , Canais de Cátion TRPV/metabolismo , Fármacos Neuroprotetores/farmacologia , Hipotermia/metabolismo , Lipopolissacarídeos/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Óxido Nítrico/metabolismo
4.
Exp Cell Res ; 432(1): 113784, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37730144

RESUMO

Atherosclerosis is a persistent inflammatory state that contributes significantly to cardiovascular disease, a primary cause of mortality worldwide. Enhanced lipid uptake by macrophages and their transformation into foam cells play a key role in the development of atherosclerosis. Recent studies using in vivo mouse models indicated that activation of AMPK has anti-atherosclerotic effects by upregulating the expression of cholesterol efflux transporters in foam cells and promoting cholesterol efflux. However, the pathway downstream of AMPK that contributes to elevated expression of cholesterol efflux transporters remains unclear. In this study, we found that activation of AMPK by AICAR and metformin inhibits foam cell formation via suppression of mTOR in macrophages. Specifically, activation of AMPK indirectly reduced the phosphorylation level of mTOR at Ser2448 and promoted the expression of cholesterol efflux transporters and cholesterol efflux. These inhibitory effects on foam cell formation were counteracted by mTOR activators. Metformin, a more nonspecific AMPK activator than AICAR, appears to inhibit foam cell formation via anti-inflammatory effects in addition to suppression of the mTOR pathway. The results of this study suggest that the development of new drugs targeting AMPK activation and mTOR inhibition may lead to beneficial results in the prevention and treatment of atherosclerosis.


Assuntos
Aterosclerose , Metformina , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Macrófagos/metabolismo , Colesterol/metabolismo , Células Espumosas , Serina-Treonina Quinases TOR/metabolismo , Metformina/farmacologia , Metformina/metabolismo , Aterosclerose/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo
5.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769149

RESUMO

Atherosclerosis can lead to cardiovascular and cerebrovascular diseases. Atherosclerotic plaque formation is promoted by the accumulation of inflammatory cells. Therefore, modulating monocyte recruitment represents a potential therapeutic strategy. In an inflammatory state, the expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) is upregulated in endothelial cells. We previously reported that miR-1914-5p in endothelial cells suppresses interleukin (IL)-1ß-induced ICAM-1 expression and monocyte adhesion to endothelial cells. However, whether monocyte miR-1914-5p affects monocyte recruitment is unclear. In this study, IL-1ß decreased miR-1914-5p expression in a human monocyte cell line. Moreover, miR-1914-5p inhibition enhanced adhesion to endothelial cells with the upregulation of macrophage-1 antigen (Mac-1), a counter-ligand to ICAM-1. Transmigration through the endothelial layer was also promoted with the upregulation of monocyte chemotactic protein-1 (MCP-1). Furthermore, a miR-1914-5p mimic suppressed IL-1ß-induced monocyte adhesion and transmigration in monocytes with Mac-1 and MCP-1 downregulation. Further investigation of miR-1914-5p in monocytes could lead to the development of novel diagnostic markers and therapeutic strategies for atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Humanos , Monócitos/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Adesão Celular/fisiologia
6.
Cancers (Basel) ; 15(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36765693

RESUMO

Genetic abnormalities induce the DNA damage response (DDR), which enables DNA repair at cell cycle checkpoints. Although the DDR is thought to function in preventing the onset and progression of cancer, DDR-related proteins are also thought to contribute to tumorigenesis, tumor progression, and drug resistance by preventing irreparable genomic abnormalities from inducing cell death. In the present study, the combination of ataxia telangiectasia-mutated serine/threonine kinase (ATM) and checkpoint kinase 1 (Chk1) inhibition exhibited synergistic antitumor effects and induced synergistic lethality in colorectal cancer cells at a low dose. The ATM and Chk1 inhibitors synergistically promoted the activation of cyclin-dependent kinase 1 by decreasing the phosphorylation levels of T14 and Y15. Furthermore, the combined treatment increased the number of sub-G1-stage cells, phospho-histone H2A.X-positive cells, and TdT-mediated dUTP nick-end labeling-positive cells among colon cancer cells, suggesting that the therapy induces apoptosis. Finally, the combined treatment exhibited a robust antitumor activity in syngeneic tumor model mice. These findings should contribute to the development of new treatments for colorectal cancer that directly exploit the genomic instability of cancer cells.

7.
Biochem Biophys Rep ; 27: 101046, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34179516

RESUMO

Atherosclerosis is a chronic inflammatory disease and the underlying cause of most cardiovascular diseases. Interleukin (IL)-1ß facilitates early atherogenic lesion formation by increasing monocyte adhesion to endothelial cells via upregulation of adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1). MicroRNAs (miRNAs) have been shown to be associated with inflammatory conditions in the vascular system. The expression of circulating miR-1914-5p is reportedly downregulated in patients with cardiovascular diseases. However, the role of miR-1914-5p downregulation in IL-1ß-induced endothelial cell dysfunction and the effect of miR-1914-5p on lesion formation remain unclear. Therefore, we investigated whether miR-1914-5p is associated with monocyte adhesion in human endothelial cells. IL-1ß decreased miR-1914-5p expression in EA.hy926 cells. In addition, miR-1914-5p depletion enhanced ICAM-1 expression and monocyte adhesion in EA.hy926 cells. Moreover, miR-1914-5p mimic suppressed monocyte adhesion and ICAM-1 expression induced by IL-1ß in endothelial cells. These results suggest that suppression of miR-1914-5p expression by IL-1ß may be an important regulator in mediating monocyte adhesion in endothelial cells. Further investigation of miR-1914-5p may lead to the development of novel therapeutic strategies for atherosclerosis.

9.
Cell Mol Neurobiol ; 41(3): 459-468, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32382852

RESUMO

Although therapeutic hypothermia (TH) provides neuroprotection, the cellular mechanism underlying the neuroprotective effect of TH has not yet been fully elucidated. In the present study, we investigated the effect of TH on microglial activation to determine whether hypothermia attenuates neuronal damage via microglial activation. After lipopolysaccharide (LPS) stimulation, BV-2 microglia cells were cultured under normothermic (37 °C) or hypothermic (33.5 °C) conditions. Under hypothermic conditions, expression of pro-inflammatory cytokines and inducible nitric oxide synthase (iNOS) was suppressed. In addition, phagocytosis of latex beads was significantly suppressed in BV-2 cells under hypothermic conditions. Moreover, nuclear factor-κB signaling was inhibited under hypothermic conditions. Finally, neuronal damage was attenuated following LPS stimulation in neurons co-cultured with BV-2 cells under hypothermic conditions. In conclusion, hypothermia attenuates neuronal damage via inhibition of microglial activation, including microglial iNOS and pro-inflammatory cytokine expression and phagocytic activity. Investigating the mechanism of microglial activation regulation under hypothermic conditions could contribute to the development of novel neuroprotective therapies.


Assuntos
Citocinas/biossíntese , Hipotermia/patologia , Microglia/patologia , Neurônios/patologia , Fagocitose , Animais , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citocinas/genética , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
10.
J Neurosci ; 40(40): 7625-7636, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32913108

RESUMO

Oligodendrocyte (OL) progenitor cells (OPCs) are generated, proliferate, migrate, and differentiate in the developing brain. Although the development of OPCs is prerequisite for normal brain function, the molecular mechanisms regulating their development in the neocortex are not fully understood. Several molecules regulate the tangential distribution of OPCs in the developing neocortex, but the cue molecule(s) that regulate their radial distribution remains unknown. Here, we demonstrate that the secreted glycoprotein Reelin suppresses the proliferation of OPCs and acts as a repellent for their migration in vitro These functions rely on the binding of Reelin to its receptors and on the signal transduction involving the intracellular protein Dab1. In the late embryonic neocortex of mice with attenuated Reelin signaling [i.e., Reelin heterozygote-deficient, Dab1 heterozygote-deficient mutant, or very low-density lipoprotein receptor (VLDLR)-deficient mice], the number of OPCs increased and their distribution shifted toward the superficial layers. In contrast, the number of OPCs decreased and they tended to distribute in the deep layers in the neocortex of mice with abrogated inactivation of Reelin by proteolytic cleavage, namely a disintegrin and metalloproteinase with thrombospondin type 1 motifs 3 (ADAMTS-3)-deficient mice and cleavage-resistant Reelin knock-in mice. Both male and female animals were used. These data indicate that Reelin-Dab1 signaling regulates the proliferation and radial distribution of OPCs in the late embryonic neocortex and that the regulation of Reelin function by its specific proteolysis is required for the normal development of OPCs.SIGNIFICANCE STATEMENT Here, we report that Reelin-Dab1 signaling regulates the proliferation and radial distribution of OPCs in the late embryonic mouse neocortex. Oligodendrocyte (OL) progenitor cells (OPCs) express Reelin signaling molecules and respond to Reelin stimulation. Reelin-Dab1 signaling suppresses the proliferation of OPCs both in vitro and in vivo Reelin repels OPCs in vitro, and the radial distribution of OPCs is altered in mice with either attenuated or augmented Reelin-Dab1 signaling. This is the first report identifying the secreted molecule that plays a role in the radial distribution of OPCs in the late embryonic neocortex. Our results also show that the regulation of Reelin function by its specific proteolysis is important for the normal development of OPCs.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Oligodendroglia/metabolismo , Serina Endopeptidases/metabolismo , Proteínas ADAMTS/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neocórtex/embriologia , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Ligação Proteica , Receptores de LDL/metabolismo , Proteína Reelina , Serina Endopeptidases/genética
11.
Exp Cell Res ; 393(2): 112094, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32439495

RESUMO

Atherosclerosis is an important underlying cause of cardiovascular diseases; vascular endothelial cells play a vital role in inflammatory responses in the initial steps of atherosclerosis. High levels of the pro-inflammatory cytokine interleukin-6 (IL-6) long have been considered a risk factor in the development and complications of atherosclerotic disease. However, it is still controversial whether IL-6 is atherogenic or atheroprotective. Recently, miR-126-3p, an endothelial cell-specific microRNA, has been proposed as an atheroprotective molecule. Therefore, we investigated whether IL-6 accelerates endothelial cell responses through the suppression of miR-126-3p expression in human endothelial cell line EA.hy926. IL-6 yielded concentration-dependent decreases in miRNA-126-3p accumulation in EA.hy926 cells, leading in turn to increased expression of genes targeted by miRNA-126-3p. In addition, adhesion of the human monocyte cell line THP-1 was enhanced by the exposure of EA.hy926 cells to IL-6, with associated increases in the levels of the adhesion molecule intercellular adhesion molecule-1 (ICAM-1). Suppression of miR-126-3p expression resulted in upregulation of miRNA-126-3p-regulated genes, enhanced adhesion of THP-1 cells, and increased ICAM-1 accumulation in EA.hy926 cells. In contrast, miR-126-3p overproduction had the opposite effects. The regulation of miRNA-126-3p by IL-6 may have important implications for the development of novel protective therapies targeting atherosclerosis.


Assuntos
Interleucina-6/metabolismo , Interleucina-6/farmacologia , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
12.
J Neuroinflammation ; 17(1): 141, 2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32359362

RESUMO

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) has a high morbidity rate and involves severe neurologic deficits, including cerebral palsy. Therapeutic hypothermia (TH) has been shown to decrease the mortality rate and provide neuroprotection in infants with HIE. However, death and disability rates in HIE infants treated with TH remain high. Although the cellular mechanism of the neuroprotective effect of TH remains unclear, astrocytic erythropoietin (EPO) is known to be a key mediator of neuroprotection under hypoxic conditions. In the present study, we investigated the hypothermia effect on EPO expression in astrocytes and determined whether hypothermia attenuates neuronal damage via EPO signaling. METHODS: Astrocytes derived from rat cerebral cortex were cultured under oxygen/glucose deprivation (OGD). The expression of EPO and hypoxia-inducible factor (HIF), a transcription factor of EPO, was assessed. After OGD, astrocytes were cultured under normothermic (37 °C) or hypothermic (33.5 °C) conditions, and then EPO and HIF expression was assessed. After OGD, rat cortical neurons were cultured in astrocyte-conditioned medium (ACM) derived from the hypothermic group, and neuronal apoptosis was evaluated. RESULTS: OGD induced EPO mRNA and protein expression, although at lower levels than hypoxia alone. HIF-1α and HIF-2α protein expression increased under hypoxia alone and OGD, although OGD increased HIF-2α protein expression less than hypoxia alone. EPO gene and protein expression after OGD was significantly higher under hypothermia. Moreover, expression of HIF-1α and HIF-2α protein was enhanced under hypothermia. In the presence of ACM derived from hypothermic astrocytes following OGD, the number of cleaved caspase 3 and TdT-mediated dUTP nick-end labeling-positive apoptotic neurons was lower than in the presence of ACM from normothermic astrocytes following OGD. Blockade of EPO signaling using anti-EPO neutralization antibody attenuated the anti-apoptotic effect of ACM derived from hypothermic astrocytes following OGD. CONCLUSIONS: Hypothermia after OGD stabilized HIF-EPO signaling in astrocytes, and upregulated EPO expression could suppress neuronal apoptosis. Investigating the neuroprotective effect of EPO from astrocytes under hypothermic conditions may contribute to the development of novel neuroprotection-based therapies for HIE.


Assuntos
Astrócitos/metabolismo , Eritropoetina/biossíntese , Hipotermia Induzida , Neurônios/patologia , Neuroproteção/fisiologia , Animais , Hipóxia-Isquemia Encefálica/patologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...