Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 25(Pt 6): 1803-1818, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407193

RESUMO

X-ray diffraction imaging is a technique for visualizing the structure of biological cells. In X-ray diffraction imaging experiments using synchrotron radiation, cryogenic conditions are necessary in order to reduce radiation damage in the biological cells. Frozen-hydrated biological specimens kept at cryogenic temperatures are also free from drying and bubbling, which occurs in wet specimens under vacuum conditions. In a previous study, the diffraction apparatus KOTOBUKI-1 [Nakasako et al. (2013), Rev. Sci. Instrum. 84, 093705] was constructed for X-ray diffraction imaging at cryogenic temperatures by utilizing a cryogenic pot, which is a cooling device developed in low-temperature physics. In this study a new cryogenic pot, suitable for tomography experiments, has been developed. The pot can rotate a biological cell over an angular range of ±170° against the direction of the incident X-ray beam. Herein, the details and the performance of the pot and miscellaneous devices are reported, along with established experimental procedures including specimen preparation. The apparatus has been used in tomography experiments for visualizing the three-dimensional structure of a Cyanidioschyzon merolae cell with an approximate size of 5 µm at a resolution of 136 nm. Based on the experimental results, the necessary improvements for future experiments and the resolution limit achievable under experimental conditions within a maximum tolerable dose are discussed.

2.
Rev Sci Instrum ; 87(5): 053109, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27250394

RESUMO

Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speed higher than 25 µm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA