Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(4): 1243-1256, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36662259

RESUMO

In this study, rational design and saturation mutagenesis efforts for engineering phenylalanine ammonia-lyase from Petroselinum crispum (PcPAL) provided tailored PALs active towards challenging, highly valuable di-substituted substrates, such as the L-DOPA precursor 3,4-dimethoxy-L-phenylalanine or the 3-bromo-4-methoxy-phenylalanine. The rational design approach and saturation mutagenesis strategy unveiled identical PcPAL variants of improved activity, highlighting the limited mutational variety of the substrate specificity-modulator residues, L134, F137, I460 of PcPAL. Due to the restricted catalytic efficiency of the best performing L134A/I460V and F137V/I460V PcPAL variants, we imprinted these beneficial mutations to PALs of different origins. The variants of PALs from Arabidopsis thaliana (AtPAL) and Anabaena variabilis (AvPAL) showed higher catalytic efficiency than their PcPAL homologues. Further, the engineered PALs were also compared in terms of catalytic efficiency with a novel aromatic ammonia-lyase from Loktanella atrilutea (LaAAL), close relative of the metagenome-derived aromatic ammonia-lyase AL-11, reported recently to possess atypically high activity towards substrates with electron-donor aromatic substituents. Indeed, LaAAL outperformed the engineered Pc/At/AvPALs in the production of 3,4-dimethoxy-L-phenylalanine; however, in case of 3-bromo-4-methoxy derivatives it showed no activity, with computational results supporting the occurrence of steric hindrance. Transferring the unique array of selectivity modulator residues from LaAAL to the well-characterized PALs did not enhance their activity towards the targeted substrates. Moreover, applying the rational design strategy valid for these well-characterized PALs to LaAAL decreased its activity. These results suggest that distinct tailoring rationale is required for LaAAL/AL-11-like aromatic ammonia-lyases, which might represent a distinct PAL subclass, with natural reaction and substrate scope modified through evolutionary processes. KEY POINTS: • PAL-activity for challenging substrates generated by protein engineering • Rational/semi-rational protein engineering reveals constrained mutational variability • Engineered PALs are outperformed by novel ALs of distinct catalytic site signature.


Assuntos
Fenilalanina Amônia-Liase , Engenharia de Proteínas , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Domínio Catalítico , Fenilalanina , Mutação
2.
J Org Chem ; 88(2): 852-862, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36583610

RESUMO

An efficient preparative-scale synthetic procedure of l-phenylalanine derivatives has been developed using mutant variants of phenylalanine ammonia-lyase from Arabidopsis thaliana (AtPAL). After rigorous reaction engineering, the AtPAL-catalyzed hydroamination reaction of cinnamic acids provided several unnatural amino acids of high synthetic value, such as (S)-m- and (S)-p-methoxyphenylalanine; (S)-o- and (S)-m-methylphenylalanine; and (S)-o- and (S)-p-bromophenylalanine at preparative scale, significantly surpassing the catalytic efficiency in terms of conversions and yields of the previously reported PcPAL-based biotransformations. The AtPAL variants tolerated high substrate and product concentrations, representing an important extension of the PAL-toolbox, while the engineered biocatalytic procedures of improved E-factor and space-time yields fulfill the requirements of sustainable and green chemistry, providing facile access to valuable amino acid building blocks.


Assuntos
Arabidopsis , Fenilalanina Amônia-Liase , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/química , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina , Aminoácidos , Biocatálise
3.
Sci Rep ; 12(1): 10606, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739148

RESUMO

Unnatural substituted amino acids play an important role as chiral building blocks, especially for pharmaceutical industry, where the synthesis of chiral biologically active molecules still represents an open challenge. Recently, modification of the hydrophobic binding pocket of phenylalanine ammonia-lyase from Petroselinum crispum (PcPAL) resulted in specifically tailored PcPAL variants, contributing to a rational design template for PAL-activity enhancements towards the differently substituted substrate analogues. Within this study we tested the general applicability of this rational design model in case of PALs, of different sources, such as from Arabidopsis thaliana (AtPAL) and Rhodosporidium toruloides (RtPAL). With some exceptions, the results support that the positions of substrate specificity modulating residues are conserved among PALs, thus the mutation with beneficial effect for PAL-activity enhancement can be predicted using the established rational design model. Accordingly, the study supports that tailoring PALs of different origins and different substrate scope, can be performed through a general method. Moreover, the fact that AtPAL variants I461V, L133A and L257V, all outperformed in terms of catalytic efficiency the corresponding, previously reported, highly efficient PcPAL variants, of identical catalytic site, suggests that not only catalytic site differences influence the PAL-activity, thus for the selection of the optimal PAL-biocatalysts for a targeted process, screening of PALs from different origins, should be included.


Assuntos
Petroselinum , Fenilalanina Amônia-Liase , Sítios de Ligação , Domínio Catalítico , Petroselinum/genética , Fenilalanina Amônia-Liase/metabolismo , Especificidade por Substrato
4.
Biomolecules ; 10(6)2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486192

RESUMO

Phenylalanine ammonia-lyases (PALs) are attractive biocatalysts for the stereoselective synthesis of non-natural phenylalanines. The rational design of PALs with extended substrate scope, highlighted the substrate specificity-modulator role of residue I460 of Petroselinum crispum PAL. Herein, saturation mutagenesis at key residue I460 was performed in order to identify PcPAL variants of enhanced activity or to validate the superior catalytic properties of the rationally explored I460V PcPAL compared with the other possible mutant variants. After optimizations, the saturation mutagenesis employing the NNK-degeneracy generated a high-quality transformant library. For high-throughput enzyme-activity screens of the mutant library, a PAL-activity assay was developed, allowing the identification of hits showing activity in the reaction of non-natural substrate, p-MeO-phenylalanine. Among the hits, besides the known I460V PcPAL, several mutants were identified, and their increased catalytic efficiency was confirmed by biotransformations using whole-cells or purified PAL-biocatalysts. Variants I460T and I460S were superior to I460V-PcPAL in terms of catalytic efficiency within the reaction of p-MeO-Phe. Moreover, I460T PcPAL maintained the high specificity constant of the wild-type enzyme for the natural substrate, l-Phe. Molecular docking supported the favorable substrate orientation of p-MeO-cinnamic acid within the active site of I460T variant, similarly as shown earlier for I460V PcPAL (PDB ID: 6RGS).


Assuntos
Petroselinum/enzimologia , Fenilalanina Amônia-Liase/genética , Biocatálise , Simulação de Acoplamento Molecular , Mutação , Fenilalanina Amônia-Liase/química , Fenilalanina Amônia-Liase/metabolismo
5.
Sci Rep ; 9(1): 20123, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882791

RESUMO

The biocatalytic synthesis of L- and D-phenylalanine analogues of high synthetic value have been developed using as biocatalysts mutant variants of phenylalanine ammonia lyase from Petroselinum crispum (PcPAL), specifically tailored towards mono-substituted phenylalanine and cinnamic acid substrates. The catalytic performance of the engineered PcPAL variants was optimized within the ammonia elimination and ammonia addition reactions, focusing on the effect of substrate concentration, biocatalyst:substrate ratio, reaction buffer and reaction time, on the conversion and enantiomeric excess values. The optimal conditions provided an efficient preparative scale biocatalytic procedure of valuable phenylalanines, such as (S)-m-methoxyphenylalanine (Y = 40%, ee > 99%), (S)-p-bromophenylalanine (Y = 82%, ee > 99%), (S)-m-(trifluoromethyl)phenylalanine (Y = 26%, ee > 99%), (R)-p-methylphenylalanine, (Y = 49%, ee = 95%) and (R)-m-(trifluoromethyl)phenylalanine (Y = 34%, ee = 93%).


Assuntos
Petroselinum/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina/biossíntese , Amônia/metabolismo , Biocatálise , Biotransformação , Engenharia Genética , Petroselinum/enzimologia , Petroselinum/genética , Fenilalanina Amônia-Liase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...