Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 102: 105090, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547578

RESUMO

BACKGROUND: Sarcomas represent an extensive group of malignant diseases affecting mesodermal tissues. Among sarcomas, the clinical management of chondrosarcomas remains a complex challenge, as high-grade tumours do not respond to current therapies. Mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes are among the most common mutations detected in chondrosarcomas and may represent a therapeutic opportunity. The presence of mutated IDH (mIDH) enzymes results in the accumulation of the oncometabolite 2-HG leading to molecular alterations that contribute to drive tumour growth. METHODS: We developed a personalized medicine strategy based on the targeted NGS/Sanger sequencing of sarcoma samples (n = 6) and the use of matched patient-derived cell lines as a drug-testing platform. The anti-tumour potential of IDH mutations found in two chondrosarcoma cases was analysed in vitro, in vivo and molecularly (transcriptomic and DNA methylation analyses). FINDINGS: We treated several chondrosarcoma models with specific mIDH1/2 inhibitors. Among these treatments, only the mIDH2 inhibitor enasidenib was able to decrease 2-HG levels and efficiently reduce the viability of mIDH2 chondrosarcoma cells. Importantly, oral administration of enasidenib in xenografted mice resulted in a complete abrogation of tumour growth. Enasidenib induced a profound remodelling of the transcriptomic landscape not associated to changes in the 5 mC methylation levels and its anti-tumour effects were associated with the repression of proliferative pathways such as those controlled by E2F factors. INTERPRETATION: Overall, this work provides preclinical evidence for the use of enasidenib to treat mIDH2 chondrosarcomas. FUNDING: Supported by the Spanish Research Agency/FEDER (grants PID2022-142020OB-I00; PID2019-106666RB-I00), the ISC III/FEDER (PI20CIII/00020; DTS18CIII/00005; CB16/12/00390; CB06/07/1009; CB19/07/00057); the GEIS group (GEIS-62); and the PCTI (Asturias)/FEDER (IDI/2021/000027).


Assuntos
Aminopiridinas , Neoplasias Ósseas , Condrossarcoma , Sarcoma , Triazinas , Humanos , Animais , Camundongos , Medicina de Precisão , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética , Isocitrato Desidrogenase/genética , Mutação , Neoplasias Ósseas/genética
2.
Free Radic Biol Med ; 209(Pt 1): 127-134, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37844652

RESUMO

Osteosarcoma (OS) is an aggressive bone cancer with poor prognosis, largely due to the limited effectiveness of current treatments such as doxorubicin (DX). Developing ways to overcome DX resistance is a significant clinical challenge. Here, we used two DX-resistant models to study the potential of Cold Plasma Treated Medium (PTM) to prevent DX resistance in OS. During the acquisition of the resistant phenotype upon long-term DX exposure, OS resistant cells became less proliferative, overexpressed the drug resistance-related efflux pump MDR1 and displayed a concomitant loss of SOD2 or GPX1. According to the reduced expression of these antioxidant enzymes, PTM treatment produced higher levels of oxidative express and was more effective in eradicating DX-resistant cells. Moreover, PTM reduced the expression of MDR1, thus sensitizing resistant cells to DX. These findings uncover new vulnerabilities of DX-resistant cells related with their inability to cope with excessive oxidative stress and their dependence on MDR1 that can be exploited using PTM-based treatments to provide new therapeutic approaches for the management of drug resistance in OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Gases em Plasma , Humanos , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Doxorrubicina/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
3.
Biomed Pharmacother ; 162: 114627, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37018985

RESUMO

Osteosarcomas are frequently associated to a poor prognosis and a modest response to current treatments. EC-8042 is a well-tolerated mithramycin analog that has demonstrated an efficient ability to eliminate tumor cells, including cancer stem cell subpopulations (CSC), in sarcomas. In transcriptomic and protein expression analyses, we identified NOTCH1 signaling as one of the main pro-stemness pathways repressed by EC-8042 in osteosarcomas. Overexpression of NOTCH-1 resulted in a reduced anti-tumor effect of EC-8042 in CSC-enriched 3D tumorspheres cultures. On the other hand, the depletion of the NOTCH-1 downstream target HES-1 was able to enhance the action of EC-8042 on CSCs. Moreover, HES1 depleted cells failed to recover after treatment withdrawal and showed reduced tumor growth potential in vivo. In contrast, mice xenografted with NOTCH1-overexpressing cells responded worse than parental cells to EC-8042. Finally, we found that active NOTCH1 levels in sarcoma patients was associated to advanced disease and lower survival. Overall, these data highlight the relevant role that NOTCH1 signaling plays in mediating stemness in osteosarcoma. Moreover, we demonstrate that EC-8042 is powerful inhibitor of NOTCH signaling and that the anti-CSC activity of this mithramycin analog highly rely on its ability to repress this pathway.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Camundongos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Osteossarcoma/patologia , Plicamicina/farmacologia , Receptor Notch1/metabolismo , Receptores Notch/metabolismo
4.
Redox Biol ; 62: 102685, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36989573

RESUMO

Osteosarcoma (OS) is a malignant type of bone cancer that arises in periods of increased bone formation. Curative strategies for these types of tumors have remained essentially unchanged for decades and the overall survival for most advanced cases is still dismally low. This is in part due to the existence of drug resistant Cancer Stem Cells (CSC) with progenitor properties that are responsible for tumor relapse and metastasis. In the quest for therapeutic alternatives for OS, Cold Atmospheric Plasmas and Plasma-Treated Liquids (PTL) have come to the limelight as a source of Reactive Oxygen and Nitrogen Species displaying selectivity towards a variety of cancer cell lines. However, their effects on CSC subpopulations and in vivo tumor growth have been barely studied to date. By employing bioengineered 3D tumor models and in vivo assays, here we show that low doses of PTL increase the levels of pro-stemness factors and the self-renewal ability of OS cells, coupled to an enhanced in vivo tumor growth potential. This could have critical implications to the field. By proposing a combined treatment, our results demonstrate that the deleterious pro-stemness signals mediated by PTL can be abrogated when this is combined with the STAT3 inhibitor S3I-201, resulting in a strong suppression of in vivo tumor growth. Overall, our study unveils an undesirable stem cell-promoting function of PTL in cancer and supports the use of combinatorial strategies with STAT3 inhibitors as an efficient treatment for OS avoiding critical side effects. We anticipate our work to be a starting point for wider studies using relevant 3D tumor models to evaluate the effects of plasma-based therapies on tumor subpopulations of different cancer types. Furthermore, combination with STAT3 inhibition or other suitable cancer type-specific targets can be relevant to consolidate the development of the field.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Gases em Plasma , Humanos , Linhagem Celular Tumoral , Gases em Plasma/farmacologia , Proliferação de Células , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Células-Tronco Neoplásicas/metabolismo , Apoptose
5.
Biomedicines ; 11(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672716

RESUMO

Drug resistance is a major problem in cancer treatment, as it limits the effectiveness of pharmacological agents and can lead to disease progression. Cold atmospheric plasma (CAP) is a technology that uses ionized gas (plasma) to generate reactive oxygen and nitrogen species (RONS) that can kill cancer cells. CAP is a novel approach for overcoming drug resistance in cancer. In recent years, there has been a growing interest in using CAP to enhance the effectiveness of chemotherapy drugs. In this review, we discuss the mechanisms behind this phenomenon and explore its potential applications in cancer treatment. Going through the existing literature on CAP and drug resistance in cancer, we highlight the challenges and opportunities for further research in this field. Our review suggests that CAP could be a promising option for overcoming drug resistance in cancer and warrants further investigation.

6.
Free Radic Biol Med ; 189: 32-41, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35843475

RESUMO

High-dose systemic chemotherapy constitutes a main strategy in the management of bone metastases, employing drugs like doxorubicin (DOX), related with severe side effects. To solve this issue, Cold Atmospheric Plasmas (CAP) have been proposed as potential non-invasive anti-cancer agents capable of improving the efficacy of traditional drugs. Here, we investigate the cytotoxic effects of Plasma Conditioned Medium (PCM) in combination with DOX in prostate cancer cells from bone metastases (PC-3) as well as in non-malignant bone-cells. PCM was able to enhance the cytotoxic potential of DOX both in monolayer and in a 3D bioengineered model mimicking the bone matrix. The combined treatment of PCM + DOX resulted in a profound downregulation of the redox defenses (CAT1, SOD2, GPX1) and drug resistance genes (MRP1, MDR1, BCRP1), resulting in an enhanced uptake of DOX coupled to an overload of intracellular ROS. Besides, PCM improved the cytotoxic potential of DOX interfering on the migratory and clonogenic potential of PC-3 cells. Importantly, non-malignant bone cells were unaffected by the combination of PCM + DOX. Overall, these new findings may represent a new therapeutic approach for the management of bone metastatic prostate cancer in the future.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Osteossarcoma , Gases em Plasma , Neoplasias da Próstata , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Doxorrubicina , Humanos , Masculino , Osteossarcoma/tratamento farmacológico , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética
7.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742867

RESUMO

Bone sarcomas have not shown a significant improvement in survival for decades, due, in part, to the development of resistance to current systemic treatments, such as doxorubicin. To better understand those mechanisms mediating drug-resistance we generated three osteosarcoma and one chondrosarcoma cell lines with a stable doxorubicin-resistant phenotype, both in vitro and in vivo. These resistant strains include a pioneer model generated from a patient-derived chondrosarcoma line. The resistant phenotype was characterized by a weaker induction of apoptosis and DNA damage after doxorubicin treatment and a lower migratory capability. In addition, all resistant lines expressed higher levels of ABC pumps; meanwhile, no clear trends were found in the expression of anti-apoptotic and stem cell-related factors. Remarkably, upon the induction of resistance, the proliferation potential was reduced in osteosarcoma lines but enhanced in the chondrosarcoma model. The exposure of resistant lines to other anti-tumor drugs revealed an increased response to cisplatin and/or methotrexate in some models. Finally, the ability to retain the resistant phenotype in vivo was confirmed in an osteosarcoma model. Altogether, this work evidenced the co-existence of common and case-dependent phenotypic traits and mechanisms associated with the development of resistance to doxorubicin in bone sarcomas.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Condrossarcoma , Osteossarcoma , Antineoplásicos/farmacologia , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo
8.
Sci Rep ; 12(1): 6911, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484295

RESUMO

Sarcomas are mesenchymal cancers which often show an aggressive behavior and patient survival largely depends on an early detection. In last years, much attention has been given to the fact that cancer patients release specific odorous volatile organic compounds (VOCs) that can be efficiently detected by properly trained sniffer dogs. Here, we have evaluated for the first time the ability of sniffer dogs (n = 2) to detect osteosarcoma cell cultures and patient samples. One of the two dogs was successfully trained to discriminate osteosarcoma patient-derived primary cells from mesenchymal stem/stromal cells (MSCs) obtained from healthy individuals. After the training phase, the dog was able to detect osteosarcoma specific odor cues in a different panel of 6 osteosarcoma cell lines with sensitivity and specificity rates between 95 and 100%. Moreover, the same VOCs were also detected by the sniffer dog in saliva samples from osteosarcoma patients (n = 2) and discriminated from samples from healthy individuals with a similar efficacy. Altogether, these results indicate that there are common odor profiles shared by cultures of osteosarcoma cells and body fluid samples from patients and provide a first proof of concept about the potential of canine odor detection as a non-invasive screening method to detect osteosarcomas.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Sarcoma , Compostos Orgânicos Voláteis , Animais , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/veterinária , Cães , Humanos , Odorantes , Osteossarcoma/diagnóstico , Osteossarcoma/veterinária , Olfato , Cães Trabalhadores
9.
J Nanobiotechnology ; 19(1): 267, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488783

RESUMO

BACKGROUND: Sarcomas comprise a group of aggressive malignancies with very little treatment options beyond standard chemotherapy. Reposition of approved drugs represents an attractive approach to identify effective therapeutic compounds. One example is mithramycin (MTM), a natural antibiotic which has demonstrated a strong antitumour activity in several tumour types, including sarcomas. However, its widespread use in the clinic was limited by its poor toxicity profile. RESULTS: In order to improve the therapeutic index of MTM, we have loaded MTM into newly developed nanocarrier formulations. First, polylactide (PLA) polymeric nanoparticles (NPs) were generated by nanoprecipitation. Also, liposomes (LIP) were prepared by ethanol injection and evaporation solvent method. Finally, MTM-loaded hydrogels (HG) were obtained by passive loading using a urea derivative non-peptidic hydrogelator. MTM-loaded NPs and LIP display optimal hydrodynamic radii between 80 and 105 nm with a very low polydispersity index (PdI) and encapsulation efficiencies (EE) of 92 and 30%, respectively. All formulations show a high stability and different release rates ranging from a fast release in HG (100% after 30 min) to more sustained release from NPs (100% after 24 h) and LIP (40% after 48 h). In vitro assays confirmed that all assayed MTM formulations retain the cytotoxic, anti-invasive and anti-stemness potential of free MTM in models of myxoid liposarcoma, undifferentiated pleomorphic sarcoma and chondrosarcoma. In addition, whole genome transcriptomic analysis evidenced the ability of MTM, both free and encapsulated, to act as a multi-repressor of several tumour-promoting pathways at once. Importantly, the treatment of mice bearing sarcoma xenografts showed that encapsulated MTM exhibited enhanced therapeutic effects and was better tolerated than free MTM. CONCLUSIONS: Overall, these novel formulations may represent an efficient and safer MTM-delivering alternative for sarcoma treatment.


Assuntos
Plicamicina/análogos & derivados , Plicamicina/farmacologia , Plicamicina/uso terapêutico , Sarcoma/patologia , Animais , Antibacterianos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Condrossarcoma/tratamento farmacológico , Composição de Medicamentos , Feminino , Humanos , Hidrogéis/química , Hidrogéis/uso terapêutico , Lipossomos , Camundongos , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Poliésteres/química , Poliésteres/uso terapêutico , Sarcoma/tratamento farmacológico
10.
Nat Protoc ; 16(6): 2826-2850, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33990800

RESUMO

Cold atmospheric plasma (CAP) is a potential anticancer therapy. CAP has cytotoxic effects when applied either directly to cancer cell cultures or indirectly through plasma-conditioned liquids. This protocol describes how to treat adherent cultures of human cancer cell lines with CAP or plasma-conditioned medium and determine cell viability following treatment. The protocol also includes details on how to quantify the reactive oxygen and nitrogen species present in medium following CAP treatment, using chemical probes using UV-visible or fluorescence spectroscopy. CAP treatment takes ~30 min, and 3 h are required to complete quantification of reactive oxygen and nitrogen species. By providing a standardized protocol for evaluation of the effects of CAP and plasma-conditioned medium, we hope to facilitate the comparison and interpretation of results seen across different laboratories.


Assuntos
Neoplasias/terapia , Gases em Plasma/uso terapêutico , Linhagem Celular Tumoral , Humanos
11.
J Clin Med ; 10(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672274

RESUMO

Osteosarcoma is the most common primary bone tumor, and its first line of treatment presents a high failure rate. The 5-year survival for children and teenagers with osteosarcoma is 70% (if diagnosed before it has metastasized) or 20% (if spread at the time of diagnosis), stressing the need for novel therapies. Recently, cold atmospheric plasmas (ionized gases consisting of UV-Vis radiation, electromagnetic fields and a great variety of reactive species) and plasma-treated liquids have been shown to have the potential to selectively eliminate cancer cells in different tumors through an oxidative stress-dependent mechanism. In this work, we review the current state of the art in cold plasma therapy for osteosarcoma. Specifically, we emphasize the mechanisms unveiled thus far regarding the action of plasmas on osteosarcoma. Finally, we review current and potential future approaches, emphasizing the most critical challenges for the development of osteosarcoma therapies based on this emerging technique.

12.
Free Radic Biol Med ; 164: 107-118, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33401009

RESUMO

The use of oxidative stress generated by Cold Atmospheric Plasma (CAP) in oncology is being recently studied as a novel potential anti-cancer therapy. However, the beneficial effects of CAP for treating osteosarcoma have mostly been demonstrated in 2-dimensional cultures of cells, which do not mimic the complexity of the 3-dimensional (3D) bone microenvironment. In order to evaluate the effects of CAP in a relevant context of the human disease, we developed a 3D tissue-engineered model of osteosarcoma using a bone-like scaffold made of collagen type I and hydroxyapatite nanoparticles. Human osteosarcoma cells cultured within the scaffold showed a high capacity to infiltrate and proliferate and to exhibit osteomimicry in vitro. As expected, we observed significantly different functional behaviors between monolayer and 3D cultures when treated with Cold Plasma-Activated Ringer's Solution (PAR). Our data reveal that the 3D environment not only protects cells from PAR-induced lethality by scavenging and diminishing the amount of reactive oxygen and nitrogen species generated by CAP, but also favours the stemness phenotype of osteosarcoma cells. This is the first study that demonstrates the negative effect of PAR on cancer stem-like cell subpopulations in a 3D biomimetic model of cancer. These findings will allow to suitably re-focus research on plasma-based therapies in future.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Gases em Plasma , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Células-Tronco Neoplásicas , Osteossarcoma/tratamento farmacológico , Estresse Oxidativo , Microambiente Tumoral
13.
Cancers (Basel) ; 12(1)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963398

RESUMO

Osteosarcoma (OS) is the main primary bone cancer, presenting poor prognosis and difficult treatment. An innovative therapy may be found in cold plasmas, which show anti-cancer effects related to the generation of reactive oxygen and nitrogen species in liquids. In vitro models are based on the effects of plasma-treated culture media on cell cultures. However, effects of plasma-activated saline solutions with clinical application have not yet been explored in OS. The aim of this study is to obtain mechanistic insights on the action of plasma-activated Ringer's saline (PAR) for OS therapy in cell and organotypic cultures. To that aim, cold atmospheric plasma jets were used to obtain PAR, which produced cytotoxic effects in human OS cells (SaOS-2, MG-63, and U2-OS), related to the increasing concentration of reactive oxygen and nitrogen species generated. Proof of selectivity was found in the sustained viability of hBM-MSCs with the same treatments. Organotypic cultures of murine OS confirmed the time-dependent cytotoxicity observed in 2D. Histological analysis showed a decrease in proliferating cells (lower Ki-67 expression). It is shown that the selectivity of PAR is highly dependent on the concentrations of reactive species, being the differential intracellular reactive oxygen species increase and DNA damage between OS cells and hBM-MSCs key mediators for cell apoptosis.

14.
J Clin Med ; 8(8)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382448

RESUMO

The frequent dysregulation of SRC family kinases (SFK) in multiple cancers prompted various inhibitors to be actively tested in preclinical and clinical trials. Disappointingly, dasatinib and saracatinib failed to demonstrate monotherapeutic efficacy in patients with head and neck squamous cell carcinomas (HNSCC). Deeper functional and mechanistic knowledge of the actions of these drugs is therefore needed to improve clinical outcome and to develop more efficient combinational strategies. Even though the SFK inhibitors dasatinib and saracatinib robustly blocked cell migration and invasion in HNSCC cell lines, this study unveils undesirable stem cell-promoting functions that could explain the lack of clinical efficacy in HNSCC patients. These deleterious effects were targeted by the mithramycin analog EC-8042 that efficiently eliminated cancer stem cells (CSC)-enriched tumorsphere cultures as well as tumor bulk cells and demonstrated potent antitumor activity in vivo. Furthermore, combination treatment of dasatinib with EC-8042 provided favorable complementary anti-proliferative, anti-invasive, and anti-CSC functions without any noticeable adverse interactions of both agents. These findings strongly support combinational strategies with EC-8042 for clinical testing in HNSCC patients. These data may have implications on ongoing dasatinib-based trials.

15.
Sci Rep ; 9(1): 10681, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337843

RESUMO

Osteosarcoma (OS) is the most common primary bone tumor but current therapies still have poor prognosis. Cold Atmospheric Plasma (CAP) and Plasma activated media (PAM) have shown potential to eliminate cancer cells in other tumors. It is thought that Reactive Oxygen and Nitrogen species (RONS) in PAM are key players but cell culture media composition alters treatment outcomes and data interpretation due to scavenging of certain RONS. In this work, an atmospheric pressure plasma jet was employed to obtain PAM in the presence or absence of pyruvate and used to treat the SaOS-2 (OS) cell line or hBM-MSC healthy cells. OS cells show higher sensitivity to PAM treatment than healthy cells, both in medium with and without pyruvate, activating apoptosis, DNA damage and deregulating cellular pathways mediated by c-JUN, AKT, AMPK or STAT3. In line with previous works, lack of pyruvate increases cytotoxic potential of PAM affecting cancer and healthy cells by increasing 10-100 times the concentration of H2O2 without altering that of nitrites and thus decreasing CAP anti-tumor selectivity. Suitable conditions for CAP anti-cancer selectivity can be obtained by modifying plasma process parameters (distance, flow, treatment time) to obtain adequate balance of the different RONS in cell culture media.


Assuntos
Antineoplásicos/farmacologia , Apoptose/fisiologia , Neoplasias Ósseas/metabolismo , Osteossarcoma/metabolismo , Gases em Plasma/farmacologia , Ácido Pirúvico/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Humanos , Osteossarcoma/patologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
J Clin Med ; 8(4)2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987403

RESUMO

For the cancer genomics era, there is a need for clinically annotated close-to-patient cell lines suitable to investigate altered pathways and serve as high-throughput drug-screening platforms. This is particularly important for drug-resistant tumors like chondrosarcoma which has few models available. Here we established and characterized new cell lines derived from two secondary (CDS06 and CDS11) and one dedifferentiated (CDS-17) chondrosarcomas as well as another line derived from a CDS-17-generated xenograft (T-CDS17). These lines displayed cancer stem cell-related and invasive features and were able to initiate subcutaneous and/or orthotopic animal models. Different mutations in Isocitrate Dehydrogenase-1 (IDH1), Isocitrate Dehydrogenase-2 (IDH2), and Tumor Supressor P53 (TP53) and deletion of Cyclin Dependent Kinase Inhibitor 2A (CDKN2A) were detected both in cell lines and tumor samples. In addition, other mutations in TP53 and the amplification of Mouse Double Minute 2 homolog (MDM2) arose during cell culture in CDS17 cells. Whole exome sequencing analysis of CDS17, T-CDS17, and matched patient samples confirmed that cell lines kept the most relevant mutations of the tumor, uncovered new mutations and revealed structural variants that emerged during in vitro/in vivo growth. Altogether, this work expanded the panel of clinically and genetically-annotated chondrosarcoma lines amenable for in vivo studies and cancer stem cell (CSC) characterization. Moreover, it provided clues of the genetic drift of chondrosarcoma cells during the adaptation to grow conditions.

17.
Int J Cancer ; 145(1): 254-266, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30575954

RESUMO

Cytotoxic drugs like doxorubicin remain as the most utilized agents in sarcoma treatment. However, advanced sarcomas are often resistant, thus stressing the need for new therapies aimed to overcome this resistance. Multikinase inhibitors provide an efficient way to target several pro-tumorigenic pathways using a single agent and may constitute a valuable strategy in the treatment of sarcomas, which frequently show an aberrant activation of pro-tumoral kinases. Therefore, we studied the antitumor activity of EC-70124, an indolocarbazole analog that have demonstrated a robust ability to inhibit a wide range of pro-survival kinases. Evaluation of the phospho-kinase profile in cell-of-origin sarcoma models and/or sarcoma primary cell lines evidenced that PI3K/AKT/mTOR, JAK/STAT or SRC were among the most highly activated pathways. In striking contrast with the structurally related drug midostaurin, EC-70124 efficiently prevented the phosphorylation of these targets and robustly inhibited proliferation through a mechanism associated to the induction of DNA damage, cell cycle arrest and apoptosis. In addition, EC-70124 was able to partially reduce tumor growth in vivo. Importantly, this compound inhibited the expression and activity of ABC efflux pumps involved in drug resistance. In line with this ability, we found that the combined treatment of EC-70124 with doxorubicin resulted in a synergistic cytotoxic effect in vitro and an increased antitumor activity of this cytotoxic drug in vivo. Altogether, these results uncover the capability of the novel multikinase inhibitor EC-70124 to counteract drug resistance in sarcoma and highlight its therapeutic potential when combined with current treatments.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carbazóis/farmacologia , Doxorrubicina/farmacologia , Sarcoma/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Doxorrubicina/administração & dosagem , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Sarcoma/enzimologia , Transdução de Sinais/efeitos dos fármacos , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Neoplasia ; 20(1): 44-56, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29190494

RESUMO

Deregulated SRC/FAK signaling leads to enhanced migration and invasion in many types of tumors. In myxoid and round cell liposarcoma (MRCLS), an adipocytic tumor characterized by the expression of the fusion oncogene FUS-CHOP, SRC have been found as one of the most activated kinases. Here we used a cell-of-origin model of MRCLS and an MRCLS cell line to thoroughly characterize the mechanisms of cell invasion induced by FUS-CHOP using in vitro (3D spheroid invasion assays) and in vivo (chicken chorioallantoic membrane model) approaches. FUS-CHOP expression activated SRC-FAK signaling and increased the invasive ability of MRCLS cells. In addition, FAK expression was found to significantly correlate with tumor aggressiveness in sarcoma patient samples. The involvement of SRC/FAK activation in FUS-CHOP-mediated invasion was further confirmed using the SRC inhibitor dasatinib, the specific FAK inhibitor PF-573228, and FAK siRNA. Notably, dasatinib and PF573228 could also efficiently block the invasion of cancer stem cell subpopulations. Downstream of SRC/FAK signaling, we found that FUS-CHOP expression increases the levels of the RHO/ROCK downstream effector phospho-MLC2 (T18/S19) and that this activation was prevented by dasatinib or PF573228. Moreover, the ROCK inhibitor RKI-1447 was able to completely abolish invasion in FUS-CHOP-expressing cells. These data uncover the involvement of SRC/FAK/RHO/ROCK signaling axis in FUS-CHOP-mediated invasion, thus providing a rationale for testing inhibitors of this pathway as potential novel antimetastatic agents for MRCLS treatment.


Assuntos
Proteínas de Fase Aguda/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Lipossarcoma Mixoide/genética , Lipossarcoma Mixoide/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteína FUS de Ligação a RNA/genética , Transdução de Sinais , Fator de Transcrição CHOP/genética , Quinases Associadas a rho/metabolismo , Quinases da Família src/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Lipossarcoma Mixoide/patologia , Células-Tronco Neoplásicas/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , RNA Interferente Pequeno/genética , Proteína FUS de Ligação a RNA/metabolismo , Fator de Transcrição CHOP/metabolismo
19.
Neoplasia ; 19(6): 460-470, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28494349

RESUMO

Trabectedin has been approved for second-line treatment of soft tissue sarcomas. However, its efficacy to target sarcoma initiating cells has not been addressed yet. Here, we used pioneer models of myxoid/round cell liposarcoma (MRCLS) and undifferentiated pleomorphic sarcoma (UPS) developed from transformed human mesenchymal stromal/stem cells (MSCs) to evaluate the effect of trabectedin in the cell type responsible for initiating sarcomagenesis and their derived cancer stem cells (CSC) subpopulations. We found that low nanomolar concentrations of trabectedin efficiently inhibited the growth of sarcoma-initiating cells, induced cell cycle arrest, DNA damage and apoptosis. Interestingly, trabectedin treatment repressed the expression of multiple genes responsible for the development of the CSC phenotype, including pluripotency factors, CSC markers and related signaling pathways. Accordingly, trabectedin induced apoptosis and reduced the survival of CSC-enriched tumorsphere cultures with the same efficiency that inhibits the growth of bulk tumor population. In vivo, trabectedin significantly reduced the mitotic index of MRCLS xenografts and inhibited tumor growth at a similar extent to that observed in doxorubicin-treated tumors. Combination of trabectedin with campthotecin (CPT), a chemotherapeutic drug that shows a robust anti-tumor activity when combined with alkylating agents, resulted in a very strong synergistic inhibition of tumor cell growth and highly increased DNA damage and apoptosis induction. Importantly, the enhanced anti-tumor activity of this combination was also observed in CSC subpopulations. These data suggest that trabectedin and CPT combination may constitute a novel strategy to effectively target both the cell-of-origin and CSC subpopulations in sarcoma.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camptotecina/administração & dosagem , Dioxóis/administração & dosagem , Lipossarcoma Mixoide/tratamento farmacológico , Lipossarcoma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Tetra-Hidroisoquinolinas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Lipossarcoma/patologia , Lipossarcoma Mixoide/patologia , Camundongos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/efeitos dos fármacos , Trabectedina , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Stem Cells Int ; 2016: 3631764, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27366153

RESUMO

Osteosarcoma (OS) is the most common type of primary solid tumor that develops in bone. Although standard chemotherapy has significantly improved long-term survival over the past few decades, the outcome for those patients with metastatic or recurrent OS remains dismally poor and, therefore, novel agents and treatment regimens are urgently required. A hypothesis to explain the resistance of OS to chemotherapy is the existence of drug resistant CSCs with progenitor properties that are responsible of tumor relapses and metastasis. These subpopulations of CSCs commonly emerge during tumor evolution from the cell-of-origin, which are the normal cells that acquire the first cancer-promoting mutations to initiate tumor formation. In OS, several cell types along the osteogenic lineage have been proposed as cell-of-origin. Both the cell-of-origin and their derived CSC subpopulations are highly influenced by environmental and epigenetic factors and, therefore, targeting the OS-CSC environment and niche is the rationale for many recently postulated therapies. Likewise, some strategies for targeting CSC-associated signaling pathways have already been tested in both preclinical and clinical settings. This review recapitulates current OS cell-of-origin models, the properties of the OS-CSC and its niche, and potential new therapies able to target OS-CSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...