Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(5): e27, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36651281

RESUMO

Guanine (G)-rich nucleic acids are prone to assemble into four-stranded structures, so-called G-quadruplexes. Abnormal GGGGCC repeat elongations, and in particular their folding states, are associated with amyotrophic lateral sclerosis and frontotemporal dementia. Due to methodological constraints however, most studies of G quadruplex structures are restricted to in vitro conditions. Evidence of how GGGGCC repeats form into G-quadruplexes in vivo is sparse. We devised a readout strategy, exploiting the sensitivity of trans-cis isomerization of cyanine dyes to local viscosity and sterical constraints. Thereby, folding states of cyanine-labeled RNA, and in particular G-quadruplexes, can be identified in a sensitive manner. The isomerization kinetics, monitored via fluorescence blinking generated upon transitions between a fluorescent trans isomer and a non-fluorescent cis isomer, was first characterized for RNA with GGGGCC repeats in aqueous solution using fluorescence correlation spectroscopy and transient state (TRAST) monitoring. With TRAST, monitoring the isomerization kinetics from how the average fluorescence intensity varies with laser excitation modulation characteristics, we could then detect folding states of fluorescently tagged RNA introduced into live cells.


Assuntos
Demência Frontotemporal , Quadruplex G , Humanos , Corantes Fluorescentes , Demência Frontotemporal/genética , Isomerismo , RNA/química
2.
J Phys Chem B ; 126(16): 3048-3058, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35417173

RESUMO

Mitochondrial membranes and their microenvironments directly influence and reflect cellular metabolic states but are difficult to probe on site in live cells. Here, we demonstrate a strategy, showing how the widely used mitochondrial membrane localization fluorophore 10-nonyl acridine orange (NAO) can be transformed into a multifunctional probe of membrane microenvironments by monitoring its blinking kinetics. By transient state (TRAST) studies of NAO in small unilamellar vesicles (SUVs), together with computational simulations, we found that NAO exhibits prominent reversible singlet-triplet state transitions and can act as a light-induced Lewis acid forming a red-emissive doublet radical. The resulting blinking kinetics are highly environment-sensitive, specifically reflecting local membrane oxygen concentrations, redox conditions, membrane charge, fluidity, and lipid compositions. Here, not only cardiolipin concentration but also the cardiolipin acyl chain composition was found to strongly influence the NAO blinking kinetics. The blinking kinetics also reflect hydroxyl ion-dependent transitions to and from the fluorophore doublet radical, closely coupled to the proton-transfer events in the membranes, local pH, and two- and three-dimensional buffering properties on and above the membranes. Following the SUV studies, we show by TRAST imaging that the fluorescence blinking properties of NAO can be imaged in live cells in a spatially resolved manner. Generally, the demonstrated blinking imaging strategy can transform existing fluorophore markers into multiparametric sensors reflecting conditions of large biological relevance, which are difficult to retrieve by other means. This opens additional possibilities for fundamental membrane studies in lipid vesicles and live cells.


Assuntos
Piscadela , Cardiolipinas , Fluorescência , Corantes Fluorescentes , Cinética
3.
Sci Rep ; 9(1): 18133, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792325

RESUMO

Protein-lipid interactions in cellular membranes modulate central cellular functions, are often transient in character, but occur too intermittently to be readily observable. We introduce transient state imaging (TRAST), combining sensitive fluorescence detection of fluorophore markers with monitoring of their dark triplet state transitions, allowing imaging of such protein-lipid interactions. We first determined the dark state kinetics of the biomembrane fluorophore 7-nitrobenz-2-oxa-1,3-diazole-4-yl (NBD) in lipid vesicles, and how its triplet state is quenched by spin-labels in the same membranes. We then monitored collisional quenching of NBD-lipid derivatives by spin-labelled stearic acids in live cell plasma membranes, and of NBD-lipid derivatives by spin-labelled G-Protein Coupled Receptors (GPCRs). We could then resolve transient interactions between the GPCRs and different lipids, how these interactions changed upon GPCR activation, thereby demonstrating a widely applicable means to image and characterize transient molecular interactions in live cell membranes in general, not within reach via traditional fluorescence readouts.


Assuntos
Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Receptores da Neurocinina-1/agonistas , Receptores da Neurocinina-1/metabolismo , Azóis/química , Azóis/metabolismo , Membrana Celular/efeitos dos fármacos , Corantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Lipídeos de Membrana/química , Microscopia de Fluorescência/instrumentação , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Nitrobenzenos/química , Nitrobenzenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Marcadores de Spin , Ácidos Esteáricos/química , Substância P/farmacologia
4.
Sci Rep ; 9(1): 15070, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636326

RESUMO

The autofluorescent coenzyme nicotinamide adenine dinucleotide (NADH) and its phosphorylated form (NADPH) are major determinants of cellular redox balance. Both their fluorescence intensities and lifetimes are extensively used as label-free readouts in cellular metabolic imaging studies. Here, we introduce fluorescence blinking of NAD(P)H, as an additional, orthogonal readout in such studies. Blinking of fluorophores and their underlying dark state transitions are specifically sensitive to redox conditions and oxygenation, parameters of particular relevance in cellular metabolic studies. We show that such dark state transitions in NAD(P)H can be quantified via the average fluorescence intensity recorded upon modulated one-photon excitation, so-called transient state (TRAST) monitoring. Thereby, transitions in NAD(P)H, previously only accessible from elaborate spectroscopic cuvette measurements, can be imaged at subcellular resolution in live cells. We then demonstrate that these transitions can be imaged with a standard laser-scanning confocal microscope and two-photon excitation, in parallel with regular fluorescence lifetime imaging (FLIM). TRAST imaging of NAD(P)H was found to provide additional, orthogonal information to FLIM and allows altered oxidative environments in cells treated with a mitochondrial un-coupler or cyanide to be clearly distinguished. We propose TRAST imaging as a straightforward and widely applicable modality, extending the range of information obtainable from cellular metabolic imaging of NAD(P)H fluorescence.


Assuntos
NADP/metabolismo , Imagem Óptica , Animais , Ácido Ascórbico/metabolismo , Soluções Tampão , Linhagem Celular , Concentração de Íons de Hidrogênio , Camundongos , Modelos Biológicos , Mioblastos/citologia , Oxirredução , Oxigênio/metabolismo , Fótons , Soluções , Análise Espectral
5.
Methods ; 140-141: 178-187, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29179988

RESUMO

Transient state (TRAST) monitoring can determine population dynamics of long-lived, dark transient states of fluorescent molecules, detecting only the average fluorescence intensity from a sample, when subject to different excitation pulse trains. Like Fluorescence Correlation Spectroscopy (FCS), TRAST unites the detection sensitivity of fluorescence with the environmental sensitivity of long-lived non-fluorescent states, but does not rely on detection of stochastic fluorescence fluctuations from individual molecules. Relaxed requirements on noise suppression, detection quantum yield and time-resolution of the instrument, as well as on fluorescence brightness of the molecules studied, make TRAST broadly applicable, opening also for investigations based on less bright, auto-fluorescent molecules. In this work, we applied TRAST to study the transient state population dynamics within the auto-fluorescent coenzymes flavin adenine dinucleotide (FAD) and flavin-mononucleotide (FMN). From the experimental TRAST data, we defined state models, and determined rate parameters for triplet state and redox transitions within FMN and FAD, stacking and un-stacking rates of external redox active quenching agents and by the adenine moiety of FAD itself. TRAST experiments were found to be well capable to resolve these transitions in FMN and FAD, and to track how the transitions are influenced by ambient oxygenation and redox conditions. This work demonstrates that TRAST provides a useful tool to follow local oxygenation and redox conditions via FMN and FAD fluorescence, and forms the basis for measurements on flavo-proteins and of redox and metabolic conditions in more complex environments, such as in live cells.


Assuntos
Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Espectrometria de Fluorescência/métodos , Fluorescência , Simulação de Dinâmica Molecular , Oxirredução , Espectrometria de Fluorescência/instrumentação , Fatores de Tempo
6.
J Cancer ; 8(11): 2088-2096, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28819410

RESUMO

Cellular compartmentalization of biochemical processes in eukaryotic cells is critical for many functions including shuttling of reducing equivalents across membranes. Although coordination of metabolic flux between different organelles is vital for cell physiology, its impact on tumor cell survival is not well understood. By using an integrative approach, we have dissected the role of the key metabolic enzymes Malate dehydrogenases (MDH1 and MDH2) to the survival of Non-small Cell Lung Carcinomas. Here, we report that while both the MDH1 (cytosolic) and the MDH2 (mitochondrial) enzymes display elevated levels in patients compared to normal counterparts, only high expression of MDH1 is associated with poor prognosis. We further show that the MDH1 enzymatic activity is significantly higher in NSCLC cells than that of MDH2. Accordingly, genetic depletion of MDH1 leads to significantly higher toxicity than depletion of MDH2. These findings provide molecular insights into the metabolic characteristics of the malate isoenzymes and mark MDH1 as a potential therapeutic target in these tumors.

7.
Sci Rep ; 6: 35052, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748381

RESUMO

Tryptophan fluorescence is extensively used for label-free protein characterization. Here, we show that by analyzing how the average tryptophan fluorescence intensity varies with excitation modulation, kinetics of tryptophan dark transient states can be determined in a simple, robust and reliable manner. Thereby, highly environment-, protein conformation- and interaction-sensitive information can be recorded, inaccessible via traditional protein fluorescence readouts. For verification, tryptophan transient state kinetics were determined under different environmental conditions, and compared to literature data. Conformational changes in a spider silk protein were monitored via the triplet state kinetics of its tryptophan residues, reflecting their exposure to an air-saturated aqueous solution. Moreover, tryptophan fluorescence anti-bunching was discovered, reflecting local pH and buffer conditions, previously observed only by ultrasensitive measurements in highly fluorescent photo-acids. Taken together, the presented approach, broadly applicable under biologically relevant conditions, has the potential to become a standard biophysical approach for protein conformation, interaction and microenvironment studies.


Assuntos
Triptofano/química , Fluorescência , Cinética , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...