Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Biol Macromol ; 279(Pt 1): 135066, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39197621

RESUMO

Disintegrins are a class of peptides found in snake venom that inhibit the activity of integrins, which are essential cell adhesion receptors in tumor progression and development. In this work, moojecin, a RGD disintegrin, was isolated from Bothrops moojeni snake venom, and its antitumor potential in acute myeloid leukemia (AML) HL-60 and THP-1 cells was characterized. The isolation was performed using a C18 reverse-phase column in two chromatographic steps, and its molecular mass is 7417.84 Da. N-terminal and de novo sequencing was performed to identify moojecin. Moojecin did not show cytotoxic or antiproliferative activity in THP-1 and HL-60 at tested concentrations, but it exhibited significant antimigratory activity in both cell lines, as well as inhibition of angiogenesis in the tube formation assay on Matrigel in a dose-dependent manner. A stronger interaction with integrin αVß3 was shown in integrin interaction assays compared to α5ß1, and the platelet aggregation assay indicated an IC50 of 5.039 µg/mL. Preliminary evaluation of disintegrin toxicity revealed no incidence of hemolysis or cytotoxic effects on peripheral blood mononuclear cells (PBMCs) across the tested concentrations. Thus, this is the first study to report the isolation, functional and structural characterization of a disintegrin from B. moojeni venom and bring a new perspective to assist in AML treatment.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38936799

RESUMO

Myotis davidii cystatin A (MdCSTA), a stefin A-like from the Chinese native bat species M. davidii, was expressed as a recombinant protein and functionally characterized as a strong inhibitor of the cysteine proteases papain, human cathepsins L and B and the tick cathepsin L-like BmCL1. Despite the highly conserved amino acid sequences among stefins A from different vertebrates, MdCSTA presents a Methionine-2 residue at the N-terminal region and the second binding loop (pos 73-79) that differs from human stefin A (HsCSTA) and might be related to the lower inhibition constant (Ki) value presented by this inhibitor in comparison to human stefin A inhibition to cathepsin B. Therefore, to investigate the importance of these variable regions in cathepsin B inhibition, recombinant stefins A MdCSTA and HsCSTA containing mutations at the second amino acid residue and second binding loop were expressed and evaluated in kinetic assays. Enzymatic inhibition assays with cathepsin B revealed that switching the amino acid residues at position 2 and second binding loop region between bat and human CSTAs improved the HsCSTA's and reduced MdCSTA's inhibitory activity. Additionally, molecular docking analysis estimated lower energy values for the complex between MdCSTA-cathepsin B, in comparison to human CSTA-cathepsin B, while the mutants presented intermediate values, suggesting that other regions might contribute to the higher inhibitory activity against cathepsin B by MdCSTA. In conclusion, MdCSTA, the first bat's stefin A-like inhibitor to be functionally characterized, presented a higher inhibitory activity against cathepsin B in comparison to the human inhibitor, which is partially related to the glutamine-rich second binding loop and Met-2. Further structural analysis should be performed to elucidate potential inhibitor effects on cysteine proteinases.


Assuntos
Catepsina B , Quirópteros , Cistatina A , Animais , Humanos , Catepsina B/metabolismo , Catepsina B/química , Catepsina B/genética , Catepsina B/antagonistas & inibidores , Cistatina A/metabolismo , Cistatina A/química , Cistatina A/genética , Simulação de Acoplamento Molecular , Sequência de Aminoácidos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Catepsina L/metabolismo , Catepsina L/química , Catepsina L/genética , Catepsina L/antagonistas & inibidores , Cinética , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/metabolismo
3.
Ticks Tick Borne Dis ; 15(4): 102333, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38522220

RESUMO

Rhipicephalus (Boophilus) microplus, also known as the cattle tick, causes severe parasitism and transmits different pathogens to vertebrate hosts, leading to massive economic losses. In the present study, we performed a functional characterization of a ribosomal protein from R. microplus to investigate its importance in blood feeding, egg production and viability. Ribosomal protein S18 (RPS18) is part of the 40S subunit, associated with 18S rRNA, and has been previously pointed to have a secondary role in different organisms. Rhipicephalus microplus RPS18 (RmRPS18) gene expression levels were modulated in female salivary glands during blood feeding. Moreover, mRNA levels in this tissue were 10 times higher than those in the midgut of fully engorged female ticks. Additionally, recombinant RmRPS18 was recognized by IgG antibodies from sera of cattle naturally or experimentally infested with ticks. RNAi-mediated knockdown of the RmRPS18 gene was performed in fully engorged females, leading to a significant (29 %) decrease in egg production. Additionally, egg hatching was completely impaired, suggesting that no viable eggs were produced by the RmRPS18-silenced group. Furthermore, antimicrobial assays revealed inhibitory activities against gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria, affecting bacterial growth. Data presented here show the important role of RmRPS18 in tick physiology and suggest that RmRPS18 can be a potential target for the development of novel strategies for tick control.


Assuntos
Proteínas de Artrópodes , Rhipicephalus , Proteínas Ribossômicas , Animais , Rhipicephalus/genética , Rhipicephalus/fisiologia , Proteínas Ribossômicas/genética , Feminino , Bovinos , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Doenças dos Bovinos/parasitologia , Glândulas Salivares
4.
Biochimie ; 214(Pt B): 96-101, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37364769

RESUMO

Arboviruses are a global concern for a multitude of reasons, including their increased incidence and human mortality. Vectors associated with arboviruses include the mosquito Aedes sp., which is responsible for transmitting the Zika virus. Flaviviruses, like the Zika virus, present only one chymotrypsin-like serine protease (NS3) in their genome. Together with host enzymes, the NS2B co-factor NS3 protease complex are essential for the viral replication cycle by virus polyprotein processing. To search for Zika virus NS2B-NS3 protease (ZIKVPro) inhibitors, a phage display library was constructed using the Boophilin domain 1 (BoophD1), a thrombin inhibitor from the Kunitz family. A BoophilinD1 library mutated at positions P1-P4' was constructed, presenting a titer of 2.9x106 (cfu), and screened utilizing purified ZIKVPro. The results demonstrated at the P1-P4' positions the occurrence of 47% RALHA sequence (mut 12) and 11.8% RASWA sequence (mut14), SMRPT, or KALIP (wt) sequence. BoophD1-wt and mutants 12 and 14 were expressed and purified. The purified BoophD1 wt, mut 12 and 14, presented Ki values for ZIKVPro of 0.103, 0.116, and 0.101 µM, respectively. The BoophD1 mutant inhibitors inhibit the Dengue virus 2 protease (DENV2) with Ki values of 0.298, 0.271, and 0.379 µM, respectively. In conclusion, BoophD1 mut 12 and 14 selected for ZIKVPro demonstrated inhibitory activity like BoophD1-wt, suggesting that these are the strongest Zika inhibitors present in the BoophD1 mutated phage display library. Furthermore, BoophD1 mutants selected for ZIKVPro inhibit both Zika and Dengue 2 proteases making them potential pan-flavivirus inhibitors.


Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , Animais , Humanos , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/genética , Mosquitos Vetores , Serina Endopeptidases/genética , Inibidores Enzimáticos , Antivirais/farmacologia , Peptídeo Hidrolases
5.
Langmuir ; 39(19): 6823-6836, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37129569

RESUMO

To date, much effort has been devoted toward the study of protein corona formation onto large gold nanoparticles (GNPs). However, the protein corona concept breaks down for GNPs in the ultrasmall size regime (<3 nm), and, as a result, our understanding of ultrasmall GNP (usGNP)-protein interactions remains incomplete. Herein, we used anionic usGNPs and six different proteins as model systems to systematically investigate usGNP-protein interactions, with particular focus on the time evolution and long-term behavior of complex formation. The different proteins comprised chymotrypsin (Cht), trypsin (Try), thrombin (Thr), serum albumin (HSA), cytochrome c (Cyt c), and factor XII (FXII). We used a range of biochemical and biophysical methods to estimate binding affinities, determine the effects of usGNPs on protein structure and function, assess the reversibility of any protein structural and functional changes, and evaluate usGNP-protein complex stability. Among the main findings, we observed that prolonged (24 h)─but not short-term (10 min)─interactions between proteins and usGNPs permanently altered protein function, including enzyme activities (Try, Thr, and FXIIa), peroxidase-like activity (Cyt c), and ligand-binding properties (HSA). Remarkably, this occurred without any large-scale loss of the native global conformation, implying time-dependent effects of usGNPs on local protein conformation or dynamics. We also found that both short-(10 min) and long-term (24 h) interactions between proteins and usGNPs yielded short-lived complexes, i.e., there was no time-dependent "hardening" of the interactions at the binding interface as usually seen with large GNPs. The present study increases our fundamental understanding of nano-bio interactions in the ultrasmall size regime, which may assist the safe and effective translation of usGNPs into the clinic.


Assuntos
Nanopartículas Metálicas , Coroa de Proteína , Ouro/química , Nanopartículas Metálicas/química , Coroa de Proteína/química , Albumina Sérica , Conformação Proteica
6.
Vet Parasitol ; 318: 109932, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060790

RESUMO

Rhipicephalus (Boophilus) microplus, the Cattle Fever Tick, causes significant economic losses in livestock in tropical and subtropical regions of the world. As the usual control strategy based on chemical acaricides presents different drawbacks, alternative control strategies have been considered for tick control. In recent decades, several tick proteins have been evaluated as targets for the development of anti-tick vaccines. Thus, in the present work, coding sequences from three different proteins present in tick saliva were employed together to construct a recombinant chimeric protein that was evaluated as an antigen in rabbit immunization. Then, the elicited antibodies were tested in a tick artificial feeding experiment to verify the protective effect against the parasites. In addition to Rhipicephalus microplus subtilisin inhibitor 7 (RmSI-7), a serine protease inhibitor member of the TIL (Trypsin Inhibitory Like) family, an interdomain region from the Kunitz inhibitor BmTI-A, and a new cysteine-rich AMP-like microplusin, called RmSEI (previously identified as an elastase inhibitor), were selected to compose the chimeric protein. Anti-chimeric IgG antibodies were able to affect R. microplus female egg production after artificial feeding. Moreover, antibodies elicited in infested tick-resistant and tick-susceptible cattle recognized the recombinant chimera. Additionally, the functional characterization of recombinant RmSEI was performed and revealed antimicrobial activity against gram-positive bacteria. Moreover, the antimicrobial protein was also recognized by antibodies elicited in sera from cattle previously exposed to R. microplus bites. Together, these data suggest that the chimeric protein composed of three salivary antigens is suitable for anti-tick vaccine development.


Assuntos
Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Coelhos , Feminino , Animais , Bovinos , Rhipicephalus/genética , Antígenos , Proteínas Recombinantes , Proteínas de Artrópodes/metabolismo , Proteínas Recombinantes de Fusão , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo , Infestações por Carrapato/prevenção & controle , Infestações por Carrapato/veterinária , Doenças dos Bovinos/parasitologia
7.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500726

RESUMO

This study investigates the efficacy of miltefosine, alkylphospholipid, and alkyltriazolederivative compounds against leukemia lineages. The cytotoxic effects and cellular and molecular mechanisms of the compounds were investigated. The inhibitory potential and mechanism of inhibition of cathepsins B and L, molecular docking simulation, molecular dynamics and binding free energy evaluation were performed to determine the interaction of cathepsins and compounds. Among the 21 compounds tested, C9 and C21 mainly showed cytotoxic effects in Jurkat and CCRF-CEM cells, two human acute lymphoblastic leukemia (ALL) lineages. Activation of induced cell death by C9 and C21 with apoptotic and necrosis-like characteristics was observed, including an increase in annexin-V+propidium iodide-, annexin-V+propidium iodide+, cleaved caspase 3 and PARP, cytochrome c release, and nuclear alterations. Bax inhibitor, Z-VAD-FMK, pepstatin, and necrostatin partially reduced cell death, suggesting that involvement of the caspase-dependent and -independent mechanisms is related to cell type. Compounds C9 and C21 inhibited cathepsin L by a noncompetitive mechanism, and cathepsin B by a competitive and noncompetitive mechanism, respectively. Complexes cathepsin-C9 and cathepsin-C21 exhibited significant hydrophobic interactions, water bridges, and hydrogen bonds. In conclusion, alkyltriazoles present cytotoxic activity against acute lymphoblastic lineages and represent a promising scaffold for the development of molecules for this application.


Assuntos
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Apoptose , Propídio/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Anexina A5/metabolismo , Linhagem Celular Tumoral
8.
Chem Res Toxicol ; 35(9): 1558-1569, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36018252

RESUMO

Ultrasmall gold nanoparticles (usNPs) and nanoclusters are an emerging class of nanomaterials exhibiting distinctive physicochemical properties and in vivo behaviors. Although understanding the interactions of usNPs with blood components is of fundamental importance to advance their clinical translation, currently, little is known about the way that usNPs interact with the hemostatic system. This study describes the effects of a model anionic p-mercaptobenzoic acid-coated usNP on the coagulation cascade, with particular emphasis on the contact pathway. It is found that in a purified system, the anionic usNPs bind to and activate factor XII (FXII). The formed usNP-FXII complexes are short-lived (residence time of ∼10 s) and characterized by an affinity constant of ∼200 nM. In human plasma, the anionic usNPs activate the contact pathway and promote coagulation. The usNPs also exhibit anticoagulant activity in plasma by interfering with the thrombin-mediated cleavage of fibrinogen. Taken together, these findings establish that anionic usNPs can disturb the normal hemostatic balance, which in turn may hinder their clinical translation. Finally, it is shown that usNPs can be designed to be nearly inert in plasma by surface coating with the natural peptide glutathione.


Assuntos
Hemostáticos , Nanopartículas Metálicas , Anticoagulantes/farmacologia , Fator XII/química , Fator XII/metabolismo , Fibrinogênio , Glutationa , Ouro/química , Ouro/farmacologia , Humanos , Nanopartículas Metálicas/química , Trombina/metabolismo
9.
Biochem Biophys Res Commun ; 590: 139-144, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34974302

RESUMO

In Brazil, the major vector of arboviruses is Aedes aegypti, which can transmit several alpha and flaviviruses. In this work, a pacifastin protease inhibitor library was constructed and used to select mutants for Ae. aegypti larvae digestive enzymes. The library contained a total of 3.25 × 105 cfu with random mutations in the reactive site (P2-P2'). The most successfully selected mutant, TiPI6, a versatile inhibitor, was able to inhibit all three Ae. aegypti larvae proteolytic activities, trypsin-like, chymotrypsin-like and elastase-like activities, with IC50 values of 0.212 nM, 0.107 nM and 0.109 nM, respectively. In conclusion, the TiPI mutated phage display library was shown to be a useful tool for the selection of an inhibitor of proteolytic activities combined in a mix. TiPI6 is capable of controlling all three digestive enzyme activities present in the larval midgut extract. To our knowledge, this is the first time that one inhibitor containing a Gln at the P1 position showed inhibitory activity against trypsin, chymotrypsin, and elastase-like activities. TiPI6 can be a candidate for further larvicidal studies.


Assuntos
Aedes/enzimologia , Inibidores Enzimáticos/farmacologia , Biblioteca de Peptídeos , Proteínas/farmacologia , Sequência de Aminoácidos , Animais , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Proteínas Mutantes/química , Proteínas Mutantes/isolamento & purificação , Mutação/genética , Inibidores da Tripsina
10.
J Venom Anim Toxins Incl Trop Dis ; 27: e20200098, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33747067

RESUMO

BACKGROUND: Triatoma infestans (Hemiptera: Reduviidae) is a hematophagous insect and the main vector of Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae). In the present study, the authors investigated whether a serine protease activity from the saliva of T. infestans has a role in vasomotor modulation, and in the insect-blood feeding by cleaving and activating protease-activated receptors (PARs). METHODS: T. infestans saliva was chromatographed as previously reported for purification of triapsin, a serine protease. The cleavage activity of triapsin on PAR peptides was investigated based on FRET technology. Mass spectrometry was used to analyze the sites of PAR-2 peptide cleaved by triapsin. NO measurements were performed using the DAN assay (2,3-diaminonapthalene). The vasorelaxant activity of triapsin was measured in vessels with or without functional endothelium pre-contracted with phenylephrine (3 µM). Intravital microscopy was used to assess the effect of triapsin on mouse skin microcirculation. RESULTS: Triapsin was able to induce hydrolysis of PAR peptides and showed a higher preference for cleavage of the PAR-2 peptide. Analysis by mass spectrometry confirmed a single cleavage site, which corresponds to the activation site of the PAR-2 receptor. Triapsin induced dose-dependent NO release in cultured human umbilical vein endothelial cells (HUVECs), reaching a maximum effect at 17.58 nM. Triapsin purified by gel-filtration chromatography (10-16 to 10-9 M) was applied cumulatively to mouse mesenteric artery rings and showed a potent endothelium-dependent vasodilator effect (EC30 = 10-12 M). Nitric oxide seems to be partially responsible for this vasodilator effect because L-NAME (L-NG-nitroarginine methyl ester 300 µM), a nitric oxide synthetase inhibitor, did not abrogate the vasodilation activated by triapsin. Anti-PAR-2 antibody completely inhibited vasodilation observed in the presence of triapsin activity. Triapsin activity also induced an increase in the mouse ear venular diameter. CONCLUSION: Data from this study suggest a plausible association between triapsin activity mediated PAR-2 activation and vasodilation caused by T. infestans saliva.

11.
J. venom. anim. toxins incl. trop. dis ; 27: e20200098, 2021. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1154770

RESUMO

Triatoma infestans (Hemiptera: Reduviidae) is a hematophagous insect and the main vector of Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae). In the present study, the authors investigated whether a serine protease activity from the saliva of T. infestans has a role in vasomotor modulation, and in the insect-blood feeding by cleaving and activating protease-activated receptors (PARs). Methods T. infestans saliva was chromatographed as previously reported for purification of triapsin, a serine protease. The cleavage activity of triapsin on PAR peptides was investigated based on FRET technology. Mass spectrometry was used to analyze the sites of PAR-2 peptide cleaved by triapsin. NO measurements were performed using the DAN assay (2,3-diaminonapthalene). The vasorelaxant activity of triapsin was measured in vessels with or without functional endothelium pre-contracted with phenylephrine (3 µM). Intravital microscopy was used to assess the effect of triapsin on mouse skin microcirculation. Results Triapsin was able to induce hydrolysis of PAR peptides and showed a higher preference for cleavage of the PAR-2 peptide. Analysis by mass spectrometry confirmed a single cleavage site, which corresponds to the activation site of the PAR-2 receptor. Triapsin induced dose-dependent NO release in cultured human umbilical vein endothelial cells (HUVECs), reaching a maximum effect at 17.58 nM. Triapsin purified by gel-filtration chromatography (10-16 to 10-9 M) was applied cumulatively to mouse mesenteric artery rings and showed a potent endothelium-dependent vasodilator effect (EC30 = 10-12 M). Nitric oxide seems to be partially responsible for this vasodilator effect because L-NAME (L-NG-nitroarginine methyl ester 300 µM), a nitric oxide synthetase inhibitor, did not abrogate the vasodilation activated by triapsin. Anti-PAR-2 antibody completely inhibited vasodilation observed in the presence of triapsin activity. Triapsin activity also induced an increase in the mouse ear venular diameter. Conclusion Data from this study suggest a plausible association between triapsin activity mediated PAR-2 activation and vasodilation caused by T. infestans saliva.(AU)


Assuntos
Animais , Peptídeos , Triatoma , Trypanosoma cruzi , Vasodilatação , Cromatografia , Receptor PAR-2 , Óxido Nítrico
12.
Biochimie ; 179: 127-134, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32946988

RESUMO

C1A cysteine peptidases have been shown to play an important role during apicomplexan invasion and egress of host red blood cells (RBCs) and therefore have been exploited as targets for drug development, in which peptidase specificity is deterministic. Babesia bovis genome is currently available and from the 17 putative cysteine peptidases annotated four belong to the C1A subfamily. In this study, we describe the biochemical characterization of a C1A cysteine peptidase, named here BbCp (B. bovis cysteine peptidase) and evaluate its possible participation in the parasite asexual cycle in host RBCs. The recombinant protein was obtained in bacterial inclusion bodies and after a refolding process, presented typical kinetic features of the cysteine peptidase family, enhanced activity in the presence of a reducing agent, optimum pH between 6.5 and 7.0 and was inhibited by cystatins from R. microplus. Moreover, rBbCp substrate specificity evaluation using a peptide phage display library showed a preference for Val > Leu > Phe. Finally, antibodies anti-rBbCp were able to interfere with B. bovis growth in vitro, which highlights the BbCp as a potential target for drug design.


Assuntos
Babesia bovis/enzimologia , Cisteína Proteases/química , Cisteína Proteases/metabolismo , Animais , Anticorpos/farmacologia , Babesia bovis/efeitos dos fármacos , Babesia bovis/genética , Babesia bovis/crescimento & desenvolvimento , Cistatinas/metabolismo , Cisteína Proteases/imunologia , Desenho de Fármacos , Cinética , Camundongos Endogâmicos BALB C , Biblioteca de Peptídeos , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
13.
Biomolecules ; 10(6)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630529

RESUMO

The aggregation of α-synuclein (α-Syn) is a characteristic of Parkinson's disease (PD). α-Syn oligomerization/aggregation is accelerated by the serine peptidase, prolyl oligopeptidase (POP). Factors that affect POP conformation, including most of its inhibitors and an impairing mutation in its active site, influence the acceleration of α-Syn aggregation resulting from the interaction of these proteins. It is noteworthy, however, that α-Syn is not cleaved by POP. Prolyl endopeptidase-like (PREPL) protein is structurally related to the serine peptidases belonging to the POP family. Based on the α-Syn-POP studies and knowing that PREPL may contribute to the regulation of synaptic vesicle exocytosis, when this protein can encounter α-Syn, we investigated the α-Syn-PREPL interaction. The binding of these two human proteins was observed with an apparent affinity constant of about 5.7 µM and, as in the α-Syn assays with POP, the presence of PREPL accelerated the oligomerization/aggregation events, with no α-Syn cleavage. Furthermore, despite this lack of hydrolytic cleavage, the serine peptidase active site inhibitor phenylmethylsulfonyl fluoride (PMSF) abolished the enhancement of the α-Syn aggregation by PREPL. Therefore, given the attention to POP inhibitors as potential drugs to treat synucleinopathies, the present data point to PREPL as another potential target to be explored for this purpose.


Assuntos
Fluoreto de Fenilmetilsulfonil/farmacologia , Prolil Oligopeptidases/antagonistas & inibidores , Inibidores de Proteases/farmacologia , alfa-Sinucleína/antagonistas & inibidores , Humanos , Prolil Oligopeptidases/química , Prolil Oligopeptidases/metabolismo , Agregados Proteicos/efeitos dos fármacos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
14.
Ticks Tick Borne Dis ; 11(3): 101374, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32008997

RESUMO

Rhipicephalus microplus is a cattle ectoparasite found in tropical and subtropical regions around the world with great impact on livestock production. R. microplus can also harbor pathogens, such as Babesia sp. and Anaplasma sp. which further compromise cattle production. Blood meal acquisition and digestion are key steps for tick development. In ticks, digestion takes place inside midgut cells and is mediated by aspartic and cysteine peptidases and, therefore, regulated by their inhibitors. Cystatins are a family of cysteine peptidases inhibitors found in several organisms and have been associated in ticks with blood acquisition, blood digestion, modulation of host immune response and tick immunity. In this work, we characterized a novel R. microplus type 1 cystatin, named Rmcystatin-1b. The inhibitor transcripts were found to be highly expressed in the midgut of partially and fully engorged females and they appear to be modulated at different days post-detachment. Purified recombinant Rmcystatin-1b displayed inhibitory activity towards typical cysteine peptidases with high affinity. Moreover, rRmcystatin-1b was able to inhibit native R. microplus cysteine peptidases and RNAi-mediated knockdown of the cystatin transcripts resulted in increased proteolytic activity. Moreover, rRmcystatin-1b was able to interfere with B. bovis growth in vitro. Taken together our data strongly suggest that Rmcystatin-1b is a regulator of blood digestion in R. microplus midgut.


Assuntos
Proteínas de Artrópodes/genética , Cisteína Proteases/genética , Regulação da Expressão Gênica , Rhipicephalus/genética , Cistatinas Salivares/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Cisteína Proteases/metabolismo , Feminino , Filogenia , Rhipicephalus/metabolismo , Cistatinas Salivares/química , Cistatinas Salivares/metabolismo , Alinhamento de Sequência
15.
J Neurochem ; 153(3): 377-389, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31950499

RESUMO

PrPC is a glycoprotein capable to interact with several molecules and mediates diverse signaling pathways. Among numerous ligands, laminin (LN) is known to promote neurite outgrowth and memory consolidation, while amyloid-beta oligomers (Aßo) trigger synaptic dysfunction. In both pathways, mGluR1 is recruited as co-receptor. The involvement of PrPC /mGluR1 in these opposite functions suggests that this complex is a key element in the regulation of synaptic activity. Considering that sleep-wake cycle is important for synaptic homeostasis, we aimed to investigate how sleep deprivation affects the expression of PrPC and its ligands, laminin, Aßo, and mGluR1, a multicomplex that can interfere with neuronal plasticity. To address this question, hippocampi of control (CT) and sleep deprived (SD) C57BL/6 mice were collected at two time points of circadian period (13 hr and 21 hr). We observed that sleep deprivation reduced PrPC and mGluR1 levels with higher effect in active state (21 hr). Sleep deprivation also caused accumulation of Aß peptides in rest period (13 hr), while laminin levels were not affected. In vitro binding assay showed that Aßo can compete with LN for PrPC binding. The influence of Aßo was also observed in neuritogenesis. LN alone promoted longer neurite outgrowth than non-treated cells in both Prnp+/+ and Prnp0/0 genotypes. Aßo alone did not show any effects, but when added together with LN, it attenuated the effects of LN only in Prnp+/+ cells. Altogether, our findings indicate that sleep deprivation regulates the availability of PrPC and Aß peptides, and based on our in vitro assays, these alterations induced by sleep deprivation can negatively affect LN-PrPC interaction, which is known to play roles in neuronal plasticity.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Laminina/metabolismo , Plasticidade Neuronal/fisiologia , Proteínas PrPC/metabolismo , Privação do Sono/metabolismo , Animais , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
Clin Proteomics ; 16: 29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341447

RESUMO

BACKGROUND: Sepsis is a dysregulated host response to infection and a major cause of death worldwide. Respiratory tract infections account for most sepsis cases and depending on the place of acquisition, i.e., community or hospital acquired infection, differ in etiology, antimicrobial resistance and outcomes. Accordingly, the host response may be different in septic patients secondary to community-acquired pneumonia and hospital acquired pneumonia (HAP). Proteomic analysis is a useful approach to evaluate broad alterations in biological pathways that take place during sepsis. Here we evaluated plasma proteome changes in sepsis secondary to HAP. METHODS: Plasma samples were obtained from patients (n = 27) at admission and after 7 days of follow-up, and were analyzed according to the patients' outcomes. The patients' proteome profiles were compared with healthy volunteers (n = 23). Pooled plasma samples were labeled with isobaric tag for relative and absolute quantitationand analyzed by LC-MS/MS. We used bioinformatics tools to find altered functions and pathways. Results were validated using biochemical estimations and ELISA tests. RESULTS: We identified 159 altered proteins in septic patients; most of them were common when comparing patients' outcomes, both at admission and after 7 days. The top altered biological processes were acute inflammatory response, response to wounding, blood coagulation and homeostasis. Lipid metabolism emerged as the main altered function in patients, with HDL as a central node in the network analysis, interacting with downregulated proteins, such as APOA4, APOB, APOC1, APOL1, SAA4 and PON1. Validation tests showed reduced plasma levels of total cholesterol, HDL-C, LDL-C, non-HDL cholesterol, apolipoproteins ApoA1 and ApoB100, and Paraoxonase 1 in HAP patients. CONCLUSION: Proteomic analysis pointed to impairment of lipid metabolism as a major change in septic patients secondary to HAP, which was further validated by the reduced levels of cholesterol moieties and apolipoproteins in plasma. Our results stress the involvement of lipids in the pathogenesis of sepsis, which is in accordance with previous reports supporting the role of lipid moieties in pathogen toxin clearance and in modulating inflammatory responses.

17.
Biochimie ; 163: 12-20, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31059753

RESUMO

In parasites, cathepsins are implicated in mechanisms related to organism surveillance and host evasion. Some parasite cathepsins have fibrinogenolytic and fibrinolytic activity, suggesting that they may contribute to maintain blood meal fluidity for extended feeding periods. Here, it is shown that BmGTI (Rhipicephalus [Boophilus] microplus Gut Thrombin Inhibitor), a protein previously described as an inhibitor of fibrinogen hydrolysis and platelet aggregation by thrombin, and BmCL1 (Rhipicephalus [Boophilus] microplus Cathepsin-L like 1) are the same protein, hereinafter referred to using the earliest name (BmCL1). To further characterize BmCL1, Rhipicephalus microplus native and recombinant (rBmCL1) proteins were obtained. Native BmCL1 was isolated using thrombin-affinity chromatography, and it displays thrombin inhibition activity. We subsequently investigated rBmCL1 interaction with thrombin. We show that rBmCL1 and thrombin have a dissociation constant (ΚD) of 130.2 ±â€¯11.2 nM, and this interaction likely occurs due to a more electronegative surface of BmCL1 at pH 7.5 than at pH 5.0, which may favor an electrostatic binding to positively charged thrombin exosites. During BmCL1-thrombin interaction, thrombin is not degraded or inhibited. rBmCL1 impairs thrombin-induced fibrinogen clotting via a fibrinogenolytic activity. Fibrinogen degradation by BmCL1 occurs by the hydrolysis of Aα- and Bß-chains, generating products similar to those produced by fibrinogenolytic cathepsins from other organisms. In conclusion, BmCL1 likely has an additional role in R. microplus blood digestion, besides its role in hemoglobin degradation at acid pH. BmCL1 fibrinogenolytic activity indicates a proteolytic activity in the neutral lumen of tick midgut, contributing to maintain the fluidity of the ingested blood, which remains to be confirmed in vivo.


Assuntos
Catepsina L/metabolismo , Rhipicephalus/enzimologia , Trombina/metabolismo , Sequência de Aminoácidos , Animais , Anticoagulantes/química , Anticoagulantes/isolamento & purificação , Anticoagulantes/metabolismo , Catepsina L/química , Catepsina L/isolamento & purificação , Bovinos , Cinética , Modelos Moleculares , Proteólise
18.
Nanoscale Adv ; 1(1): 378-388, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931428

RESUMO

The catalytic activity of enzymes can be regulated by interactions with synthetic nanoparticles (NPs) in a number of ways. To date, however, the potential use of NPs as allosteric effectors has not been investigated in detail. Importantly, targeting allosteric (distal) sites on the enzyme surface could afford unique ways to modulate the activity, allowing for either enzyme activation, partial or full inhibition. Using p-mercaptobenzoic acid-coated ultrasmall gold NPs (AuMBA) and human α-thrombin as a model system, here we experimentally tested the hypothesis that enzyme activity could be regulated through ultrasmall NP interactions at allosteric sites. We show that AuMBA interacted selectively and reversibly around two positively charged regions of the thrombin surface (exosites 1 and 2) and away from the active site. NP complexation at the exosites transmitted long-range structural changes over to the active site, altering both substrate binding affinity and catalysis. Significantly, thrombin activity was partially reduced - but not completely inhibited - by interactions with AuMBA. These findings indicate that interactions of proteins with ultrasmall NPs may mimic a typical biomolecular complexation event, and suggest the prospect of using ultrasmall particles as synthetic receptors to allosterically regulate protein function.

19.
Nanoscale ; 10(7): 3235-3244, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29383361

RESUMO

Synthetic ultrasmall nanoparticles (NPs) can be designed to interact with biologically active proteins in a controlled manner. However, the rational design of NPs requires a clear understanding of their interactions with proteins and the precise molecular mechanisms that lead to association/dissociation in biological media. Although much effort has been devoted to the study of the kinetics mechanism of protein corona formation on large NPs, the nature of NP-protein interactions in the ultrasmall regime is radically different and poorly understood. Using a combination of experimental and computational approaches, we studied the interactions of a model protein, CrataBL, with ultrasmall gold NPs passivated with p-mercaptobenzoic acid (AuMBA) and glutathione (AuGSH). We have identified this system as an ideal in vitro platform to understand the dependence of binding affinity and kinetics on NP surface chemistry. We found that the structural and chemical complexity of the passivating NP layer leads to quite different association kinetics, from slow and reaction-limited (AuGSH) to fast and diffusion-limited (AuMBA). We also found that the otherwise weak and slow AuGSH-protein interactions measured in buffer solution are enhanced in macromolecular crowded solutions. These findings advance our mechanistic understanding of biomimetic NP-protein interactions in the ultrasmall regime and have implications for the design and use of NPs in the crowded conditions common to all biological media.


Assuntos
Ouro , Nanopartículas Metálicas/química , Coroa de Proteína/química , Cinética , Ligação Proteica
20.
Toxicon ; 141: 34-42, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29179989

RESUMO

The number of snakes donated to the Brazilian Instituto Butantan has been decreasing in the past 10 years. This circumstance motivated us to compare the properties of five venom pools of Bothrops jararaca snake stored for up to 54 years. Results showed differences among venom pools regarding enzymatic and other biological activities, such as caseinolytic, phospholipase A2, hemorrhagic and coagulant activities, as well as antigenicity. Protein content, reverse-phase chromatographic profile, and immunorecognition by commercial Bothrops antivenom were comparable for all venom pools, although lethality of the most recent preparations was higher. Since the lowest functional activities did not always correspond to older venoms, differences among venom pools used for antivenom production during the period 1963-2008 may correlate with the different proportions of venoms from different localities used in their generation, rather than to long-term storage. We conclude that B. jararaca venoms properly stored for long periods of time retain their structural and pharmacological activities, thus representing useful materials for scientific research and antivenom production.


Assuntos
Bothrops , Venenos de Crotalídeos/química , Venenos de Crotalídeos/toxicidade , Animais , Antivenenos , Venenos de Crotalídeos/enzimologia , Hemorragia , Masculino , Camundongos , Preservação Biológica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA