Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194938, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086967

RESUMO

Dysregulation of cholesterol homeostasis is associated with several pathologies including cardiovascular diseases and neurological disorders such as Alzheimer's disease (AD). MicroRNAs (miRNAs) have emerged as key post-transcriptional regulators of cholesterol metabolism. We previously established the role of miR-7 in regulating insulin resistance and amyloidosis, which represents a common pathological feature between type 2 diabetes and AD. We show here an additional metabolic function of miR-7 in cholesterol biosynthesis. We found that miR-7 blocks the last steps of the cholesterol biosynthetic pathway in vitro by targeting relevant genes including DHCR24 and SC5D posttranscriptionally. Intracranial infusion of miR-7 on an adeno-associated viral vector reduced the expression of DHCR24 in the brain of wild-type mice, supporting in vivo miR-7 targeting. We also found that cholesterol regulates endogenous levels of miR-7 in vitro, correlating with transcriptional regulation through SREBP2 binding to its promoter region. In parallel to SREBP2 inhibition, the levels of miR-7 and hnRNPK (the host gene of miR-7) were concomitantly reduced in brain in a mouse model of Niemann Pick type C1 disease and in murine fatty liver, which are both characterized by intracellular cholesterol accumulation. Taken together, the results establish a novel regulatory feedback loop by which miR-7 modulates cholesterol homeostasis at the posttranscriptional level, an effect that could be exploited for therapeutic interventions against prevalent human diseases.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica , Colesterol/metabolismo , Homeostase , Proteínas do Tecido Nervoso/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
2.
Front Cardiovasc Med ; 9: 994080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407436

RESUMO

Hypoxia is a crucial factor contributing to maintenance of atherosclerotic lesions. The ability of ABCA1 to stimulate the efflux of cholesterol from cells in the periphery, particularly foam cells in atherosclerotic plaques, is an important anti-atherosclerotic mechanism. The posttranscriptional regulation by miRNAs represents a key regulatory mechanism of a number of signaling pathways involved in atherosclerosis. Previously, miR-199a-5p has been shown to be implicated in the endocytic and retrograde intracellular transport. Although the regulation of miR-199a-5p and ABCA1 by hypoxia has been already reported independently, the role of miR-199a-5p in macrophages and its possible role in atherogenic processes such us regulation of lipid homeostasis through ABCA1 has not been yet investigated. Here, we demonstrate that both ABCA1 and miR-199a-5p show an inverse regulation by hypoxia and Ac-LDL in primary macrophages. Moreover, we demonstrated that miR-199a-5p regulates ABCA1 mRNA and protein levels by directly binding to its 3'UTR. As a result, manipulation of cellular miR-199a-5p levels alters ABCA1 expression and cholesterol efflux in primary mouse macrophages. Taken together, these results indicate that the correlation between ABCA1-miR-199a-5p could be exploited to control macrophage cholesterol efflux during the onset of atherosclerosis, where cholesterol alterations and hypoxia play a pathogenic role.

3.
Cells ; 11(16)2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-36010613

RESUMO

The evident implication of the insulin-degrading enzyme (IDE) in Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM), among its capacity to degrade insulin and amyloid-ß peptide (Aß), suggests that IDE could be an essential link in the relation between hyperinsulinemia, insulin resistance and AD. However, little is known about the cellular and molecular regulation of IDE expression, and even less has been explored regarding the post-transcriptional regulation of IDE, although it represents a great molecular target of interest for therapeutic treatments. We recently described that miR-7, a novel candidate for linking AD and T2DM at the molecular level, regulates IDE and other key genes in both pathologies, including some key genes involved in the insulin signaling pathway. Here, we explored whether other miRNAs as well as other post-transcriptional regulators, such as RNA binding proteins (RBP), could potentially participate in the regulation of IDE expression in vitro. Our data showed that in addition to miR-7, miR-125, miR-490 and miR-199 regulate IDE expression at the post-transcriptional level. Moreover, we also found that IDE contains multiple potential binding sites for several RBPs, and a narrow-down prediction analysis led us to speculate on a novel regulation of IDE by RALY and HuD. Taken together, these results demonstrate the novel players controlling IDE expression that could represent potential therapeutical targets to treat several metabolic diseases with a high impact on human health, including AD and T2DM.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Insulisina , MicroRNAs , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo C , Humanos , Insulina/metabolismo , Insulisina/metabolismo , MicroRNAs/genética , MicroRNAs/uso terapêutico
4.
Biomolecules ; 12(2)2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35204710

RESUMO

Insulin resistance defines an impairment in the biologic response to insulin action in target tissues, primarily the liver, muscle, adipose tissue, and brain. Insulin resistance affects physiology in many ways, causing hyperglycemia, hypertension, dyslipidemia, visceral adiposity, hyperinsulinemia, elevated inflammatory markers, and endothelial dysfunction, and its persistence leads to the development metabolic disease, including diabetes, obesity, cardiovascular disease, or nonalcoholic fatty liver disease (NAFLD), as well as neurological disorders such as Alzheimer's disease. In addition to classical transcriptional factors, posttranscriptional control of gene expression exerted by microRNAs and RNA-binding proteins constitutes a new level of regulation with important implications in metabolic homeostasis. In this review, we describe miRNAs and RBPs that control key genes involved in the insulin signaling pathway and related regulatory networks, and their impact on human metabolic diseases at the molecular level, as well as their potential use for diagnosis and future therapeutics.


Assuntos
Resistência à Insulina , Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Regulação da Expressão Gênica , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Doenças Metabólicas/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo
5.
Front Endocrinol (Lausanne) ; 12: 635923, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122329

RESUMO

Macrophages are immune cells that play crucial roles in host defense against pathogens by triggering their exceptional phagocytic and inflammatory functions. Macrophages that reside in healthy tissues also accomplish important tasks to preserve organ homeostasis, including lipid uptake/efflux or apoptotic-cell clearance. Both homeostatic and inflammatory functions of macrophages require the precise stability of lipid-rich microdomains located at the cell membrane for the initiation of downstream signaling cascades. Caveolin-1 (Cav-1) is the main protein responsible for the biogenesis of caveolae and plays an important role in vascular inflammation and atherosclerosis. The Liver X receptors (LXRs) are key transcription factors for cholesterol efflux and inflammatory gene responses in macrophages. Although the role of Cav-1 in cellular cholesterol homeostasis and vascular inflammation has been reported, the connection between LXR transcriptional activity and Cav-1 expression and function in macrophages has not been investigated. Here, using gain and loss of function approaches, we demonstrate that LXR-dependent transcriptional pathways modulate Cav-1 expression and compartmentation within the membrane during macrophage activation. As a result, Cav-1 participates in LXR-dependent cholesterol efflux and the control of inflammatory responses. Together, our data show modulation of the LXR-Cav-1 axis could be exploited to control exacerbated inflammation and cholesterol overload in the macrophage during the pathogenesis of lipid and immune disorders, such as atherosclerosis.


Assuntos
Caveolina 1/biossíntese , Colesterol/metabolismo , Receptores X do Fígado/biossíntese , Macrófagos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Anti-Inflamatórios , Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Caveolina 1/genética , Membrana Celular/metabolismo , Detergentes , Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Transdução de Sinais , Transcrição Gênica
6.
Cancers (Basel) ; 13(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802571

RESUMO

Glioblastoma (GBM) is the most common of all brain malignant tumors; it displays a median survival of 14.6 months with current complete standard treatment. High heterogeneity, aggressive and invasive behavior, the impossibility of completing tumor resection, limitations for drug administration and therapeutic resistance to current treatments are the main problems presented by this pathology. In recent years, our knowledge of GBM physiopathology has advanced significantly, generating relevant information on the cellular heterogeneity of GBM tumors, including cancer and immune cells such as macrophages/microglia, genetic, epigenetic and metabolic alterations, comprising changes in miRNA expression. In this scenario, the zebrafish has arisen as a promising animal model to progress further due to its unique characteristics, such as transparency, ease of genetic manipulation, ethical and economic advantages and also conservation of the major brain regions and blood-brain-barrier (BBB) which are similar to a human structure. A few papers described in this review, using genetic and xenotransplantation zebrafish models have been used to study GBM as well as to test the anti-tumoral efficacy of new drugs, their ability to interact with target cells, modulate the tumor microenvironment, cross the BBB and/or their toxicity. Prospective studies following these lines of research may lead to a better diagnosis, prognosis and treatment of patients with GBM.

7.
Arterioscler Thromb Vasc Biol ; 40(6): 1510-1522, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32349535

RESUMO

OBJECTIVE: Endothelial Cav-1 (caveolin-1) expression plays a relevant role during atherogenesis by controlling NO production, vascular inflammation, LDL (low-density lipoprotein) transcytosis, and extracellular matrix remodeling. Additional studies have identified cholesterol-rich membrane domains as important regulators of autophagy by recruiting ATGs (autophagy-related proteins) to the plasma membrane. Here, we investigate how the expression of Cav-1 in the aortic endothelium influences autophagy and whether enhanced autophagy contributes to the atheroprotective phenotype observed in Cav-1-deficient mice. Approach and Results: To analyze the impact of Cav-1 deficiency on regulation of autophagy in the aortic endothelium during the progression of atherosclerosis, we fed Ldlr-/- and Cav-1-/-Ldlr-/- mice a Western diet and assessed autophagy in the vasculature. We observe that the absence of Cav-1 promotes autophagy activation in athero-prone areas of the aortic endothelium by enhancing autophagic flux. Mechanistically, we found that Cav-1 interacts with the ATG5-ATG12 complex and influences the cellular localization of autophagosome components in lipid rafts, which controls the autophagosome formation and autophagic flux. Pharmacological inhibition of autophagy attenuates the atheroprotection observed in Cav-1-/- mice by increasing endothelial inflammation and macrophage recruitment, identifying a novel molecular mechanism by which Cav-1 deficiency protects against the progression of atherosclerosis. CONCLUSIONS: These results identify Cav-1 as a relevant regulator of autophagy in the aortic endothelium and demonstrate that pharmacological suppression of autophagic flux in Cav-1-deficient mice attenuates the atheroprotection observed in Cav-1-/- mice. Additionally, these findings suggest that activation of endothelial autophagy by blocking Cav-1 might provide a potential therapeutic strategy for cardiovascular diseases including atherosclerosis.


Assuntos
Aterosclerose/prevenção & controle , Autofagia/fisiologia , Caveolina 1/deficiência , Endotélio Vascular/fisiopatologia , Vasculite/prevenção & controle , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Aorta/patologia , Aorta/fisiopatologia , Aorta/ultraestrutura , Aterosclerose/etiologia , Autofagia/efeitos dos fármacos , Caveolina 1/análise , Caveolina 1/fisiologia , Dieta Ocidental , Células Endoteliais/química , Células Endoteliais/fisiologia , Células Endoteliais/ultraestrutura , Endotélio Vascular/química , Endotélio Vascular/ultraestrutura , Feminino , Humanos , Masculino , Microdomínios da Membrana/química , Microdomínios da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Receptores de LDL/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...