Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37109950

RESUMO

Electroactive composite materials are very promising for musculoskeletal tissue engineering because they can be applied in combination with electrostimulation. In this context, novel graphene-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polyvinyl alcohol (PHBV/PVA) semi-interpenetrated networks (semi-IPN) hydrogels were engineered with low amounts of graphene (G) nanosheets dispersed within the polymer matrix to endow them with electroactive properties. The nanohybrid hydrogels, obtained by applying a hybrid solvent casting-freeze-drying method, show an interconnected porous structure and a high water-absorption capacity (swelling degree > 1200%). The thermal characterization indicates that the structure presents microphase separation, with PHBV microdomains located between the PVA network. The PHBV chains located in the microdomains are able to crystallize; even more after the addition of G nanosheets, which act as a nucleating agent. Thermogravimetric analysis indicates that the degradation profile of the semi-IPN is located between those of the neat components, with an improved thermal stability at high temperatures (>450 °C) after the addition of G nanosheets. The mechanical (complex modulus) and electrical properties (surface conductivity) significantly increase in the nanohybrid hydrogels with 0.2% of G nanosheets. Nevertheless, when the amount of G nanoparticles increases fourfold (0.8%), the mechanical properties diminish and the electrical conductivity does not increase proportionally, suggesting the presence of G aggregates. The biological assessment (C2C12 murine myoblasts) indicates a good biocompatibility and proliferative behavior. These results reveal a new conductive and biocompatible semi-IPN with remarkable values of electrical conductivity and ability to induce myoblast proliferation, indicating its great potential for musculoskeletal tissue engineering.

2.
Polymers (Basel) ; 13(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375726

RESUMO

This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels were produced by solvent casting, dissolving each polymer in chloroform and 1-methyl-2-pyrrolidone respectively, and subsequent glutaraldehyde crosslinking of the PVA chains. The microstructure and physical properties of this novel polymeric system were analysed, including thermal behaviour and degradation, water sorption, wettability and electrical conductivity. The conductivity of these advanced networks rose significantly at higher PPy nanoparticles content. Fourier transform infrared spectroscopy (FTIR) and calorimetry characterization indicated good miscibility and compatibility between all the constituents, with no phase separation and strong interactions between phases. A single glass transition was observed between those of pure PHBV and PVA, although PVA was dominant in its contribution to the glass transition process. Incorporating PPy nanoparticles significantly reduced the hydrogel swelling, even at low concentrations, indicating molecular interactions between the PPy nanoparticles and the hydrogel matrix. The PHBV/PVA semi-IPN showed higher thermal stability than the neat polymers and PHBV/PVA blend, which also remained in the tertiary systems.

3.
Polymers (Basel) ; 12(9)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887333

RESUMO

A model for the heterogeneity of local dynamics in polymer and other glass-forming materials is provided here. The fundamental characteristics of the glass transition phenomenology emerge when simulating a condensed matter open cluster that has a strong interaction with its heterogeneous environment. General glass transition features, such as non-exponential structural relaxations, the slowing down of relaxation times with temperature and specific off-equilibrium glassy dynamics can be reproduced by non-Markovian dynamics simulations with the minimum computer resources. Non-Markovian models are shown to be useful tools for obtaining insights into the complex dynamics involved in the glass transition phenomenon, including whether or not there is a need for a growing correlation length or the relationship between the non-exponentiality of structural relaxations and dynamic heterogeneity.

4.
Polymers (Basel) ; 12(3)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235735

RESUMO

Bio-nanocomposite hydrogels based on sodium alginate (SA) as polymer matrix and graphene oxide (GO) nanosheets with zinc as crosslinking agent were synthesized with the aim of incorporating the intrinsic properties of their constituents (bioactivity and antimicrobial activity). Thus, stable and highly interconnected networks were obtained from GO nanosheets dispersed in SA matrices through interactions with low amounts of zinc. The GO nanosheets were successfully incorporated into the alginate matrix in the form of a complex nano-network involving different interactions: Bonds between alginate chains induced by Zn ions (egg box structure), interactions between GO nanosheets through Zn ions and hydrogen bonds between alginate chains, and GO nanosheets. The molecular interactions and morphology were confirmed by Fourier-transform infrared spectroscopy and transmission electron microscopy. The composite's structural organization showed enhanced thermal stability. The glass transition temperature shifted to a higher temperature due to the reduced mobility induced by additional crosslinking bonds after incorporating the GO nanosheets and Zn into the polymer matrix. Finally, the dielectric behavior revealed that charge carrier mobility was hampered by the compact structure of the nanonetwork, which reduced conductivity. The combined properties of these nanocomposite hydrogels make them attractive biomaterials in the field of regenerative medicine and wound care since both surface bioactivity and antibacterial behavior are two critical factors involved in the success of a biomaterial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...