Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 11(45): 16074-16086, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38022740

RESUMO

This study presents a proof of concept for the recovery of phosphate from aqueous solutions with high phosphorus (PO4-P) initial contents to simulate the concentration of streams from decentralized wastewater systems. Solutions with ∼500 ppm phosphorus enable phosphate adsorption and recovery, in contrast to the highly diluted inlet streams (<10 ppm) from centralized wastewater treatment plants. In this work, Mg-Fe layered double hydroxide is used as a phosphate adsorbent, demonstrating its separation from aqueous streams, recovery, and use as a fertilizer following the principles of circular economy. We demonstrate that the mechanism of phosphate adsorption in this material is by a combination of surface complexation and electrostatic attraction. After the loss of crystallinity in the presence of water in the first cycle and its associated decrease in adsorption capacity, the Mg-Fe layered double hydroxide (LDH) is stable after consecutive adsorption/desorption cycles, where desorption solutions were reused to substantially increase the final phosphate concentration demonstrating the recyclability of the material in a semicontinuous process. Phosphate recovered in this way was used to complement phosphate-deficient plant growth medium, demonstrating its efficacy as a fertilizer and thereby promoting a circular and sustainable economy.

2.
Nanomaterials (Basel) ; 13(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37999313

RESUMO

The ion exchange of Na+ cations was used to photosensitise titanates nanotubes (Ti-NTs) with tris(2,2'-bipyridine)ruthenium(II) cations (Ru(bpy)32+); this yielded a light-sensitised Ti-NTs composite denoted as (Ru(bpy)3)Ti-NTs, exhibiting the characteristic absorption of Ru(bpy)32+ in visible light. Incident photon-to-current efficiency (IPCE) measurements and the photocatalytic reduction of methyl viologen reaction confirmed that in the photosensitisation of the (Ru(bpy)3)Ti-NTs composite, charge transfer and charge separation occur upon excitation by ultraviolet and visible light irradiation. The photocatalytic potential of titanate nanotubes was tested in the water-splitting reaction and the H2 evolution reaction using a sacrificial agent and showed photocatalytic activity under various light sources, including xenon-mercury lamp, simulated sunlight, and visible light. Notably, in the conditions of the H2 evolution reaction when (Ru(bpy)3)Ti-NTs were submitted to simulated sunlight, they exceeded the photocatalytic activity of pristine Ti-NTs and TiO2 by a factor of 3 and 3.5 times, respectively. Also, (Ru(bpy)3)Ti-NTs achieved the photocatalytic water-splitting reaction under simulated sunlight and visible light, producing, after 4 h, 199 and 282 µmol×H2×gcat-1. These results confirm the effective electron transfer of Ru(bpy)3 to titanate nanotubes. The stability of the photocatalyst was evaluated by a reuse test of four cycles of 24 h reactions without considerable loss of catalytic activity and crystallinity.

3.
ACS Sustain Chem Eng ; 11(28): 10242-10251, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37476420

RESUMO

This work presents a mechanistic understanding of the synthesis of small (<3 nm) gold nanoparticles in a nontoxic, eco-friendly, and biodegradable eutectic mixture of choline chloride and urea (reline) without the addition of external reducing or stabilization agents. Reline acts as a reducing agent by releasing ammonia (via urea hydrolysis), forming gold nanoparticles even at trace ammonia concentration levels. Reline also affects the speciation of the gold precursor forming gold chloro-complexes, stabilizing Au+ species, leading to an easier reduction and avoiding the otherwise fast disproportionation reaction. Such a capability is however lost in the presence of large amounts of water, where water replaces the chloride ligands in the precursor speciation. In addition, reline acts as a weak stabilizing agent, leading to small particles (<3 nm) and narrow distributions although agglomerates quickly form. Such properties are maintained in the presence of water, indicating that it is linked to the urea stabilization rather than the hydrogen-bonding network. This work has important implications in the field of green synthesis of nanoparticles with small sizes, especially for biomedical and health care applications, due to the nontoxic nature of the components of deep eutectic solvents in contrast to the conventional routes.

6.
Nat Commun ; 13(1): 4960, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002464

RESUMO

I-V-VI2 ternary chalcogenides are gaining attention as earth-abundant, nontoxic, and air-stable absorbers for photovoltaic applications. However, the semiconductors explored thus far have slowly-rising absorption onsets, and their charge-carrier transport is not well understood yet. Herein, we investigate cation-disordered NaBiS2 nanocrystals, which have a steep absorption onset, with absorption coefficients reaching >105 cm-1 just above its pseudo-direct bandgap of 1.4 eV. Surprisingly, we also observe an ultrafast (picosecond-time scale) photoconductivity decay and long-lived charge-carrier population persisting for over one microsecond in NaBiS2 nanocrystals. These unusual features arise because of the localised, non-bonding S p character of the upper valence band, which leads to a high density of electronic states at the band edges, ultrafast localisation of spatially-separated electrons and holes, as well as the slow decay of trapped holes. This work reveals the critical role of cation disorder in these systems on both absorption characteristics and charge-carrier kinetics.

7.
Water Res ; 222: 118931, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970006

RESUMO

Removal of nitrogen compounds through biological processes represents the highest energy consumption in conventional centralised wastewater treatment facilities. Alternatively, segregated systems, where wastewater is treated at its source, present the potential to provide value to nitrogen-rich compounds contained in wastewater like urea. This paper demonstrates the feasibility of a novel process to recover energy from human urine based on the pre-isolation of urea to decrease the energy requirements for its thermal decomposition compared to the conventional thermal treatment when in solution, followed by its decomposition into hydrogen. Herein, urea is separated from an aqueous solution by adsorption onto activated carbon. Thermal urea desorption and decomposition into ammonia and CO2 at 250 °C leads to full regeneration of the carbon, showing a constant adsorption capacity for at least 5 consecutive adsorption/desorption cycles. Finally, when the regeneration and urea decomposition step is coupled to an ammonia decomposition catalyst, hydrogen is produced to be used as an energy fuel. This process opens the door to a new way of circular economy by energy recovery from hydrogen-rich components in segregated wastewater streams. Preliminary energy balances show that the adoption of this energy recovery system in a city of 160,000 inhabitants would lead to a daily hydrogen production of 430 kg, with a net energy production of 2,500 kWh/day. In addition, such waste-to-energy process would lead to energy savings of 4,600 kWh/day in a conventional wastewater treatment plant reducing its energy consumption by around 35%.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Amônia , Humanos , Hidrogênio , Ureia
8.
J Phys Chem C Nanomater Interfaces ; 126(1): 563-577, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35059097

RESUMO

Nanoparticles of plasmonic materials can sustain oscillations of their free electron density, called localized surface plasmon resonances (LSPRs), giving them a broad range of potential applications. Mg is an earth-abundant plasmonic material attracting growing attention owing to its ability to sustain LSPRs across the ultraviolet, visible, and near-infrared wavelength range. Tuning the LSPR frequency of plasmonic nanoparticles requires precise control over their size and shape; for Mg, this control has previously been achieved using top-down fabrication or gas-phase methods, but these are slow and expensive. Here, we systematically probe the effects of reaction parameters on the nucleation and growth of Mg nanoparticles using a facile and inexpensive colloidal synthesis. Small NPs of 80 nm were synthesized using a low reaction time of 1 min and ∼100 nm NPs were synthesized by decreasing the overall reaction concentration, replacing the naphthalene electron carrier with biphenyl or using metal salt additives of FeCl3 or NiCl2 at longer reaction times of 17 h. Intermediate sizes up to 400 nm were further selected via the overall reaction concentration or using other metal salt additives with different reduction potentials. Significantly larger particles of over a micrometer were produced by reducing the reaction temperature and, thus, the nucleation rate. We showed that increasing the solvent coordination reduced Mg NP sizes, while scaling up the reaction reduced the mixing efficiency and produced larger NPs. Surprisingly, varying the relative amounts of Mg precursor and electron carrier had little impact on the final NP sizes. These results pave the way for the large-scale use of Mg as a low-cost and sustainable plasmonic material.

11.
Chemistry ; 27(6): 2165-2174, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33210814

RESUMO

Ceria particles play a key role in catalytic applications such as automotive three-way catalytic systems in which toxic CO and NO are oxidized and reduced to safe CO2 and N2 , respectively. In this work, we explore the incorporation of Cu and Cr metals as dopants in the crystal structure of ceria nanorods prepared by a single-step hydrothermal synthesis. XRD, Raman and XPS confirm the incorporation of Cu and Cr in the ceria crystal lattices, offering ceria nanorods with a higher concentration of oxygen vacancies. XPS also confirms the presence of Cr and Cu surface species. H2 -TPR and XPS analysis show that the simultaneous Cu and Cr co-doping results in a catalyst with a higher surface Cu concentration and a much-enhanced surface reducibility, in comparison with either undoped or singly doped (Cu or Cr) ceria nanorods. While single Cu doping enhances catalytic CO oxidation and Cr doping improves catalytic NO reduction, co-doping with both Cu and Cr enhances the benefits of both dopants in a synergistic manner employing roughly a quarter of dopant weight.

12.
Phys Chem Chem Phys ; 22(34): 18932-18949, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32567607

RESUMO

The implementation of ammonia as a hydrogen vector relies on the development of active catalysts to release hydrogen on-demand at low temperatures. As an alternative to ruthenium-based catalysts, herein we report the high activity of silica aerogel supported cobalt rhenium catalysts. XANES/EXAFS studies undertaken at reaction conditions in the presence of the ammonia feed reveal that the cobalt and rhenium components of the catalyst which had been pre-reduced are initially re-oxidised prior to their subsequent reduction to metallic and bimetallic species before catalytic activity is observed. A synergistic effect is apparent in which this re-reduction step occurs at considerably lower temperatures than for the corresponding monometallic counterpart materials. The rate of hydrogen production via ammonia decomposition was determined to be 0.007 molH2 gcat-1 h-1 at 450 °C. The current study indicates that reduced Co species are crucial for the development of catalytic activity.

13.
ACS Appl Mater Interfaces ; 12(16): 18803-18812, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32212670

RESUMO

Herein, we show a facile surfactant-free synthetic platform for the synthesis of nanostructured vanadium pentoxide (V2O5) using reline as a green and eco-friendly deep eutectic solvent. This new approach overcomes the dependence of the current synthetic methods on shape directing agents such as surfactants with potential detrimental effects on the final applications. Excellent morphological control is achieved by simply varying the water ratio in the reaction leading to the selective formation of V2O5 3D microbeads, 2D nanosheets, and 1D randomly arranged nanofleece. Using electrospray ionization mass spectroscopy (ESI-MS), we demonstrate that alkyl amine based ionic species are formed during the reline/water solvothermal treatment and that these play a key role in the resulting material morphology with templating and exfoliating properties. This work enables fundamental understanding of the activity-morphology relationship of vanadium oxide materials in catalysis, sensing applications, energy conversion, and energy storage as we prove the effect of surfactant-free V2O5 structuring on battery performance as cathode materials. Nanostructured V2O5 cathodes showed a faster charge-discharge response than the counterpart bulk-V2O5 electrode with V2O5 2D nanosheet presenting the highest improvement of the rate performance in galvanostatic charge-discharge tests.

14.
Bioelectrochemistry ; 134: 107499, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32179453

RESUMO

An "indirect" photo-electrochemical sensor is presented for the measurement of a mixture of analytes including reducing sugars (e.g. glucose, fructose) and non-reducing sugars (e.g. sucrose, trehalose). Its innovation relies on the use of a palladium film creating a two-compartment cell to separate the electrochemical and the photocatalytic processes. In this original way, the electrochemical detection is separated from the potential complex matrix of the analyte (i.e. colloids, salts, additives, etc.). Hydrogen is generated in the photocatalytic compartment by a Pt@g-C3N4 photocatalyst embedded into a hydrogen capture material composed of a polymer of intrinsic microporosity (PIM-1). The immobilised photocatalyst is deposited onto a thin palladium membrane, which allows rapid pure hydrogen diffusion, which is then monitored by chronopotentiometry (zero current) response in the electrochemical compartment. The concept is demonstrated herein for the analysis of sugar content in commercial soft drinks. There is no requirement for the analyte to be conducting with electrolyte or buffered. In this way, samples (biological or not) can be simply monitored by their exposition to blue LED light, opening the door to additional energy conversion and waste-to-energy applications.


Assuntos
Hidrogênio/química , Membranas Artificiais , Nitrilas/química , Paládio/química , Processos Fotoquímicos , Platina/química , Açúcares/análise , Catálise , Eletroquímica , Polímeros/química , Porosidade , Açúcares/química
15.
Nanoscale ; 12(4): 2740-2751, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31950962

RESUMO

This paper presents fundamental understanding of the mechanism of the Turkevich protocol, the method recommended by the National Institute of Standards and Technology for the synthesis of gold nanoparticles using sodium citrate as reducing agent. Herein, we reveal that the Turkevich mechanism consists of two consecutive reduction steps (Au3+→ Au+→ Au0) rather than a reduction followed by the disproportionation reaction as conventionally believed. This new understanding has profound implications: i. the second reduction step (Au+→ Au0), rather than the previously postulated first reduction step, is the rate-limiting reduction step and ii. the formation of acetone dicarboxylate (DC2-) as an intermediate product through the oxidation of citrate has a key role as stabilizer and as a reducing agent (stronger than sodium citrate). This knowledge enables the synthesis of monodispersed gold nanoparticles with sizes ranging from 5.2 ± 1.7 nm to 21.4 ± 3.4 nm, with the lower end considerably smaller than previously reported through the Turkevich route. This work provides fundamental guidance for the controllable synthesis of nanoparticles using DC2- as a reducing agent directly applicable to other precious metals.

19.
Chem Commun (Camb) ; 54(68): 9385-9393, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30095824

RESUMO

The 2018 Faraday Discussion on "Designing Nanoparticle Systems for Catalysis" brought together leading scientists to discuss the current state-of-the-art in the fields of computational chemistry, characterization techniques, and nanomaterial synthesis, and to debate the challenges and opportunities going forward for rational catalyst design. The meeting was a vivid discussion of how the communities accummulate knowledge and on how innovativeness can be combined to have a stronger scientific impact. In the following, we provide an overview of the meeting structure, including plenaries, papers, discussion points and breakout sessions, and we hope to show, to the wider scientific community, that there is great value in continued international discussion and scientific collaboration in these fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...