Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthritis Res Ther ; 25(1): 176, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730663

RESUMO

BACKGROUND: Synovial fibroblasts in rheumatoid arthritis (RAFLS) exhibit a pathological aberration of glycolysis and glutaminolysis. Henceforth, we aimed to investigate if dual inhibition of these pathways by phytobiological compound c28MS has the potential of synergistic therapy for arthritis by targeting both glucose and glutamine metabolism. METHODS: The presence of HK2 and GLS across various cell types and associated gene expression in human synovial cells and a murine model of arthritis was evaluated by scRNA-seq. The metabolic profiling of RAFLS cells was done using H1-nuclear magnetic resonance spectroscopy under glycolytic and glutaminolytic inhibitory conditions by incubating with 3-bromopyruvate, CB839, or dual inhibitor c28MS. FLS functional analysis was conducted under similar conditions. ELISA was employed for the quantification of IL-6, CCL2, and MMP3. K/BxN sera was administered to mice to induce arthritis for in vivo arthritis experiments. RESULTS: scRNA-seq analysis revealed that many fibroblasts expressed Hk2 along with Gls with several genes including Ptgs2, Hif1a, Timp1, Cxcl5, and Plod2 only associated with double-positive fibroblasts, suggesting that dual inhibition can be an attractive target for fibroblasts. Metabolomic and functional analysis revealed that c28MS decreased the aggressive behavior of RAFLS by targeting both upregulated glycolysis and glutaminolysis. c28MS administered in vivo significantly decreased the severity of arthritis in the K/BxN model. CONCLUSION: Our findings imply that dual inhibition of glycolysis and glutaminolysis could be an effective approach for the treatment of RA. It also suggests that targeting more than one metabolic pathway can be a novel treatment approach in non-cancer diseases.


Assuntos
Artrite Reumatoide , Humanos , Animais , Camundongos , Artrite Reumatoide/tratamento farmacológico , Metabolômica , Glicólise , Ciclo-Oxigenase 2 , Ensaio de Imunoadsorção Enzimática
2.
Front Immunol ; 14: 1103231, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529037

RESUMO

Background: Glucose metabolism, specifically, hexokinase 2 (HK2), has a critical role in rheumatoid arthritis (RA) fibroblast-like synoviocyte (FLS) phenotype. HK2 localizes not only in the cytosol but also in the mitochondria, where it protects mitochondria against stress. We hypothesize that mitochondria-bound HK2 is a key regulator of RA FLS phenotype. Methods: HK2 localization was evaluated by confocal microscopy after FLS stimulation. RA FLSs were infected with Green fluorescent protein (GFP), full-length (FL)-HK2, or HK2 lacking its mitochondrial binding motif (HK2ΔN) expressing adenovirus (Ad). RA FLS was also incubated with methyl jasmonate (MJ; 2.5 mM), tofacitinib (1 µM), or methotrexate (1 µM). RA FLS was tested for migration and invasion and gene expression. Gene associations with HK2 expression were identified by examining single-cell RNA sequencing (scRNA-seq) data from murine models of arthritis. Mice were injected with K/BxN serum and given MJ. Ad-FLHK2 or Ad-HK2ΔN was injected into the knee of wild-type mice. Results: Cobalt chloride (CoCl2) and platelet-derived growth factor (PDGF) stimulation induced HK2 mitochondrial translocation. Overexpression of the HK2 mutant and MJ incubation reversed the invasive and migrative phenotype induced by FL-HK2 after PDGF stimulation, and MJ also decreased the expression of C-X-C Motif Chemokine Ligand 1 (CXCL1) and Collagen Type I Alpha 1 Chain (COL1A1). Of interest, tofacitinib but not methotrexate had an effect on HK2 dissociation from the mitochondria. In murine models, MJ treatment significantly decreased arthritis severity, whereas HK2FL was able to induce synovial hypertrophy as opposed to HK2ΔN. Conclusion: Our results suggest that mitochondrial HK2 regulates the aggressive phenotype of RA FLS. New therapeutic approaches to dissociate HK2 from mitochondria offer a safer approach than global glycolysis inhibition.


Assuntos
Artrite Reumatoide , Sinoviócitos , Sinovite , Camundongos , Animais , Sinoviócitos/metabolismo , Hexoquinase/metabolismo , Artrite Reumatoide/metabolismo , Sinovite/metabolismo , Metotrexato/uso terapêutico , Fibroblastos/metabolismo
3.
Front Immunol ; 13: 984408, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341411

RESUMO

Metabolomic studies show that rheumatoid arthritis (RA) is associated with metabolic disruption. Metabolic changes in fibroblast-like synoviocytes (FLS) likely contribute to FLS abnormal response and strongly contribute to joint destruction. These changes often involve increased expression of nutrient transporters to meet a high demand for energy or biomolecules. The solute carrier (SLC) transporter families are nutrient transporters and serve as 'metabolic gates' for cells by mediating the transport of several different nutrients such as glucose, amino acids, vitamins, neurotransmitters, and inorganic/metal ions. In RA FLS SLC-mediated transmembrane transport was one pathway associated with different epigenetic landscape between RA and osteoarthritis (OA) FLS. These highlight that transporters from the SLC family offer unique targets for further research and offer the promise of future therapeutic targets for RA.


Assuntos
Artrite Reumatoide , Osteoartrite , Sinoviócitos , Humanos , Sinoviócitos/metabolismo , Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Osteoartrite/metabolismo , Nutrientes
4.
Cell Rep ; 38(10): 110489, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263587

RESUMO

Monosodium urate crystals (MSUc) induce inflammation in vivo without prior priming, raising the possibility of an initial cell-autonomous phase. Here, using genome-wide transcriptomic analysis and biochemical assays, we demonstrate that MSUc alone induce a metabolic-inflammatory transcriptional program in non-primed human and murine macrophages that is markedly distinct to that induced by LPS. Genes uniquely upregulated in response to MSUc belong to lipid and amino acid metabolism, glycolysis, and SLC transporters. This upregulation leads to a metabolic rewiring in sera from individuals and mice with acute gouty arthritis. Mechanistically, the initiating inflammatory-metabolic changes in acute gout flares are regulated through a persistent expression and increased binding of JUN to the promoter of target genes through JNK signaling-but not P38-in a process that is different than after LPS stimulation and independent of inflammasome activation. Finally, pharmacological JNK inhibition limits MSUc-induced inflammation in animal models of acute gouty inflammation.


Assuntos
Artrite Gotosa , Ácido Úrico , Animais , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Ácido Úrico/metabolismo
5.
Nat Rev Rheumatol ; 18(5): 258-275, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35165404

RESUMO

Osteoarthritis (OA) is a progressive degenerative disease resulting in joint deterioration. Synovial inflammation is present in the OA joint and has been associated with radiographic and pain progression. Several OA risk factors, including ageing, obesity, trauma and mechanical loading, play a role in OA pathogenesis, likely by modifying synovial biology. In addition, other factors, such as mitochondrial dysfunction, damage-associated molecular patterns, cytokines, metabolites and crystals in the synovium, activate synovial cells and mediate synovial inflammation. An understanding of the activated pathways that are involved in OA-related synovial inflammation could form the basis for the stratification of patients and the development of novel therapeutics. This Review focuses on the biology of the OA synovium, how the cells residing in or recruited to the synovium interact with each other, how they become activated, how they contribute to OA progression and their interplay with other joint structures.


Assuntos
Osteoartrite , Sinoviócitos , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Osteoartrite/patologia , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo
6.
Arthritis Rheumatol ; 74(7): 1159-1171, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35128827

RESUMO

OBJECTIVE: Since previous studies indicate that metabolism is altered in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS), we undertook this study to determine if changes in the genome-wide chromatin and DNA states in genes associated with nutrient transporters could help to identify activated metabolic pathways in RA FLS. METHODS: Data from a previous comprehensive epigenomic study in FLS were analyzed to identify differences in genome-wide states and gene transcription between RA and osteoarthritis. We utilized the single nearest genes to regions of interest for pathway analyses. Homer promoter analysis was used to identify enriched motifs for transcription factors. The role of solute carrier transporters and glutamine metabolism dependence in RA FLS was determined by small interfacing RNA knockdown, functional assays, and incubation with CB-839, a glutaminase inhibitor. We performed 1 H nuclear magnetic resonance to quantify metabolites. RESULTS: The unbiased pathway analysis demonstrated that solute carrier-mediated transmembrane transport was one pathway associated with differences in at least 4 genome-wide states or gene transcription. Thirty-four transporters of amino acids and other nutrients were associated with a change in at least 4 epigenetic marks. Functional assays revealed that solute carrier family 4 member 4 (SLC4A4) was critical for invasion, and glutamine was sufficient as an alternate source of energy to glucose. Experiments with CB-839 demonstrated decreased RA FLS invasion and proliferation. Finally, we found enrichment of motifs for c-Myc in several nutrient transporters. CONCLUSION: Our findings demonstrate that changes in the epigenetic landscape of genes are related to nutrient transporters, and metabolic pathways can be used to identify RA-specific targets, including critical solute carrier transporters, enzymes, and transcription factors, to develop novel therapeutic agents.


Assuntos
Artrite Reumatoide , Sinoviócitos , Artrite Reumatoide/tratamento farmacológico , Proliferação de Células/genética , Células Cultivadas , Epigênese Genética , Fibroblastos/metabolismo , Glutamina/metabolismo , Humanos , Nutrientes , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...