Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 269: 125405, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984235

RESUMO

In this work we describe a highly sensitive method based on a biocatalyzed electrochemiluminescence approach. The system combines, for the first time, the use of few-layer bismuthene (FLB) as a platform for the oriented immobilization of tetrahedral DNA nanostructures (TDNs) specifically designed and synthetized to detect a specific SARS-CoV-2 gene sequence. In one of its vertices, these TDNs contain a DNA capture probe of the open reading frame 1 ab (ORF1ab) of the virus, available for the biorecognition of the target DNA/RNA. At the other three vertices, there are thiol groups that enable the stable anchoring/binding to the FLB surface. This novel geometry/approach enables not only the binding of the TDNs to surfaces, but also the orientation of the capture probe in a direction normal to the bismuthine surface so that it is readily accessible for binding/recognition of the specific SARS-CoV-2 sequence. The analytical signal is based on the anodic electrochemiluminescence (ECL) intensity of luminol which, in turn, arises as a result of the reaction with H2O2, generated by the enzymatic reaction of glucose oxidation, catalyzed by the biocatalytic label avidin-glucose oxidase conjugate (Av-GOx), which acts as co-reactant in the electrochemiluminescent reaction. The method exhibits a limit of detection (LOD) of 4.31 aM and a wide linear range from 14.4 aM to 1.00 µM, and its applicability was confirmed by detecting SARS-CoV-2 in nasopharyngeal samples from COVID-19 patients without the need of any amplification process.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Humanos , Peróxido de Hidrogênio/química , Técnicas Biossensoriais/métodos , DNA/genética , DNA/química , Nanoestruturas/química , Limite de Detecção , Sondas de DNA , Reação em Cadeia da Polimerase , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos
2.
Nanomaterials (Basel) ; 12(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364534

RESUMO

The exfoliation of tridimensional crystal structures has recently been considered a new source of bidimensional materials. The new approach offers the possibility of dramatically enlarging the library of bidimensional materials, but the number of nanolayers produced so far is still limited. Here, we report for the first time the use of a new type of material, α-germanium nanolayers (2D α-Ge). The 2D α-Ge is obtained by exfoliating crystals of α-germanium in a simple one-step procedure assisted by wet ball-milling (gram-scale fabrication). The α-germanium nanolayers have been tested as anode material for high-performance LIBs. The results show excellent performance in semi-cell configuration with a high specific capacity of 1630 mAh g-1 for mass loading of 1 mg cm-2 at 0.1 C. The semi-cell was characterized by a constant current rate of 0.5 C during 400 cycles and different scan rates (0.1 C, 0.5 C, and 1 C). Interestingly, the structural characterization, including Raman spectroscopy, XRPD, and XPS, concludes that 2D α-Ge largely retains its crystallinity after continuous cycling. These results can be used to potentially apply these novel 2D germanium nanolayers to high-performance Li-ion batteries.

3.
Adv Mater ; 33(10): e2006826, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33543546

RESUMO

2D materials have opened a new field in materials science with outstanding scientific and technological impact. A largely explored route for the preparation of 2D materials is the exfoliation of layered crystals with weak forces between their layers. However, its application to covalent crystals remains elusive. Herein, a further step is taken by introducing the exfoliation of germanium, a narrow-bandgap semiconductor presenting a 3D diamond-like structure with strong covalent bonds. Pure α-germanium is exfoliated following a simple one-step procedure assisted by wet ball-milling, allowing gram-scale fabrication of high-quality layers with large lateral dimensions and nanometer thicknesses. The generated flakes are thoroughly characterized by different techniques, giving evidence that the new 2D material exhibits bandgaps that depend on both the crystallographic direction and the number of layers. Besides potential technological applications, this work is also of interest for the search of 2D materials with new properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...