Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gac Med Mex ; 160(1): 76-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753554

RESUMO

BACKGROUND: Chromosomal abnormalities are present in 50 to 60% of miscarriages and in 6 to 19% of stillbirths. Although microarrays are preferred for studying chromosomal abnormalities, many hospitals cannot offer this methodology. OBJECTIVE: To present the results of the cytogenetic analysis of 303 products of conception (POC), which included 184 miscarriages, 49 stillbirths and 17 cases of undefined age. MATERIAL AND METHODS: Karyotyping, fluorescence in situ hybridization, short tandem repeats and microarrays were used, depending on the type of loss and available sample. RESULTS: In 29 POCs we found maternal tissue and were eliminated from the analyses. Informative results were obtained in 250 (91.2 %)/274 cases; the karyotyping success rate was 80.7%; that of single nucleotide polymorphism microarrays, 94.5%; and that of fluorescence in situ hybridization and short tandem repeat, 100%. Cytogenetic abnormalities were observed in 57.6% of miscarriages and in 24.5% of stillbirths; 94% of total anomalies were numerical and 6% were submicroscopic. CONCLUSIONS: Karyotyping with simultaneous short tandem repeat study to rule out contamination of maternal cells is effective for studying miscarriages; in stillbirths, microarrays are recommended.


ANTECEDENTES: Las alteraciones cromosómicas están presentes en 50 a 60 % de los abortos espontáneos y en 6 a 19 % de los mortinatos. Aunque se prefieren los microarreglos para estudiarlos, numerosos hospitales no pueden ofrecerlos. OBJETIVO: Presentar los resultados del estudio citogenético de 303 productos de la concepción (POC), 184 se obtuvieron de abortos espontáneos, 49 fueron mortinatos y en 17 no se identificó la de edad gestacional. MATERIAL Y MÉTODOS: Se empleó cariotipo, hibridación in situ con fluorescencia, secuencias cortas repetidas en tándem y microarreglos, según el tipo de pérdida y la muestra disponible. RESULTADOS: En 29 POC se encontró tejido materno, por lo que fueron eliminados de los análisis. En 250 (91.2 %)/274 casos se obtuvieron resultados informativos; la tasa de éxito del cariotipo fue de 80.7 %; la de los microarreglos de SNP, de 94.5 %; y la de la hibridación fluorescente in situ y la repetición corta en tándem, de 100 %. Se observaron anomalías citogenéticas en 57.6 % de los abortos espontáneos y en 24.5 % de los mortinatos; 94 % de las anomalías fueron numéricas y 6 %, submicroscópicas. CONCLUSIONES: El cariotipo en conjunto con el estudio de secuencias cortas repetidas en tándem para descartar contaminación de células maternas es efectivo para estudiar abortos espontáneos; los microarreglos se recomiendan en los mortinatos.


Assuntos
Aborto Espontâneo , Aberrações Cromossômicas , Hibridização in Situ Fluorescente , Cariotipagem , Humanos , Feminino , Aborto Espontâneo/epidemiologia , Aborto Espontâneo/genética , México/epidemiologia , Gravidez , Cariotipagem/métodos , Natimorto/genética , Natimorto/epidemiologia , Adulto , Análise Citogenética/métodos , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Adulto Jovem
2.
J Theor Biol ; 573: 111608, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37595867

RESUMO

Double strand break (DSB) repair is critical to maintaining the integrity of the genome. DSB repair deficiency underlies multiple pathologies, including cancer, chromosome instability syndromes, and, potentially, neurodevelopmental defects. DSB repair is mainly handled by two pathways: highly accurate homologous recombination (HR), which requires a sister chromatid for template-based repair, limited to S/G2 phases of the cell cycle, and canonical non-homologous end joining (c-NHEJ), available throughout the cell cycle in which minimum homology is sufficient for highly efficient yet error-prone repair. Some circumstances, such as cancer, require alternative highly mutagenic DSB repair pathways like microhomology-mediated end-joining (MMEJ) and single-strand annealing (SSA), which are triggered to attend to DNA damage. These non-canonical repair alternatives are emerging as prominent drivers of resistance in drug-based tumor therapies. Multiple DSB repair options require tight inter-pathway regulation to prevent unscheduled activities. In addition to this complexity, epigenetic modifications of the histones surrounding the DSB region are emerging as critical regulators of the DSB repair pathway choice. Modeling approaches to understanding DSBs repair pathway choice are advantageous to perform simulations and generate predictions on previously uncharacterized aspects of DSBs response. In this work, we present a Boolean network model of the DSB repair pathway choice that incorporates the knowledge, into a dynamic system, of the inter-pathways regulation involved in DSB repair, i.e., HR, c-NHEJ, SSA, and MMEJ. Our model recapitulates the well-characterized HR activity observed in wild-type cells in response to DSBs. It also recovers clinically relevant behaviors of BRCA1/FANCS mutants, and their corresponding drug resistance mechanisms ascribed to DNA repair gain-of-function pathogenic variants. Since epigenetic modifiers are dynamic and possible druggable targets, we incorporated them into our model to better characterize their involvement in DSB repair. Our model predicted that loss of the TIP60 complex and its corresponding histone acetylation activity leads to activation of SSA in response to DSBs. Our experimental validation showed that TIP60 effectively prevents activation of RAD52, a key SSA executor, and confirms the suitable use of Boolean network modeling for understanding DNA DSB repair.


Assuntos
Dano ao DNA , Reparo do DNA , Ciclo Celular , Mutagênese , Divisão Celular
3.
Mol Cytogenet ; 16(1): 2, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36631885

RESUMO

BACKGROUND: The human genome presents variation at distinct levels, copy number variants (CNVs) are DNA segments of variable lengths that range from several base pairs to megabases and are present at a variable number of copies in human genomes. Common CNVs have no apparent influence on the phenotype; however, some rare CNVs have been associated with phenotypic traits, depending on their size and gene content. CNVs are detected by microarrays of different densities and are generally visualized, and their frequencies analysed using the HapMap as default reference population. Nevertheless, this default reference is inadequate when the samples analysed are from people from Mexico, since population with a Hispanic genetic background are minimally represented. In this work, we describe the variation in the frequencies of four common CNVs in Mexican-Mestizo individuals. RESULTS: In a cohort of 147 unrelated Mexican-Mestizo individuals, we found that the common CNVs 2p11.2 (99.6%), 8p11.22 (54.5%), 14q32.33 (100%), and 15q11.2 (71.1%) appeared with unexpectedly high frequencies when contrasted with the HapMap reference (ChAS). Yet, while when comparing to an ethnically related reference population, these differences were significantly reduced or even disappeared. CONCLUSION: The findings in this work contribute to (1) a better description of the CNVs characteristics of the Mexican Mestizo population and enhance the knowledge of genome variation in different ethnic groups. (2) emphasize the importance of contrasting CNVs identified in studied individuals against a reference group that-as best as possible-share the same ethnicity while keeping this relevant information in mind when conducting CNV studies at the population or clinical level.

4.
Int J Mol Sci ; 23(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35216452

RESUMO

Fanconi anemia (FA) is a rare genetic disorder caused by pathogenic variants (PV) in at least 22 genes, which cooperate in the Fanconi anemia/Breast Cancer (FA/BRCA) pathway to maintain genome stability. PV in FANCA, FANCC, and FANCG account for most cases (~90%). This study evaluated the chromosomal, molecular, and physical phenotypic findings of a novel founder FANCG PV, identified in three patients with FA from the Mixe community of Oaxaca, Mexico. All patients presented chromosomal instability and a homozygous PV, FANCG: c.511-3_511-2delCA, identified by next-generation sequencing analysis. Bioinformatic predictions suggest that this deletion disrupts a splice acceptor site promoting the exon 5 skipping. Analysis of Cytoscan 750 K arrays for haplotyping and global ancestry supported the Mexican origin and founder effect of the variant, reaffirming the high frequency of founder PV in FANCG. The degree of bone marrow failure and physical findings (described through the acronyms VACTERL-H and PHENOS) were used to depict the phenotype of the patients. Despite having a similar frequency of chromosomal aberrations and genetic constitution, the phenotype showed a wide spectrum of severity. The identification of a founder PV could help for a systematic and accurate genetic screening of patients with FA suspicion in this population.


Assuntos
Anemia de Fanconi , Biologia Computacional , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação G da Anemia de Fanconi/genética , Efeito Fundador , Homozigoto , Humanos , México
5.
Cell Stem Cell ; 28(1): 33-47.e8, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32997960

RESUMO

Bone marrow failure (BMF) in Fanconi anemia (FA) patients results from dysfunctional hematopoietic stem and progenitor cells (HSPCs). To identify determinants of BMF, we performed single-cell transcriptome profiling of primary HSPCs from FA patients. In addition to overexpression of p53 and TGF-ß pathway genes, we identified high levels of MYC expression. We correspondingly observed coexistence of distinct HSPC subpopulations expressing high levels of TP53 or MYC in FA bone marrow (BM). Inhibiting MYC expression with the BET bromodomain inhibitor (+)-JQ1 reduced the clonogenic potential of FA patient HSPCs but rescued physiological and genotoxic stress in HSPCs from FA mice, showing that MYC promotes proliferation while increasing DNA damage. MYC-high HSPCs showed significant downregulation of cell adhesion genes, consistent with enhanced egress of FA HSPCs from bone marrow to peripheral blood. We speculate that MYC overexpression impairs HSPC function in FA patients and contributes to exhaustion in FA bone marrow.


Assuntos
Anemia de Fanconi , Animais , Medula Óssea , Dano ao DNA , Anemia de Fanconi/genética , Células-Tronco Hematopoéticas , Humanos , Camundongos , Fator de Crescimento Transformador beta
6.
Front Genet ; 10: 411, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130988

RESUMO

DNA damage adaptation (DDA) allows the division of cells with unrepaired DNA damage. DNA repair deficient cells might take advantage of DDA to survive. The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs), and deficiencies in this pathway cause a fraction of breast and ovarian cancers as well as FA, a chromosome instability syndrome characterized by bone marrow failure and cancer predisposition. FA cells are hypersensitive to ICLs; however, DDA might promote their survival. We present the FA-CHKREC Boolean Network Model, which explores how FA cells might use DDA. The model integrates the FA pathway with the G2 checkpoint and the checkpoint recovery (CHKREC) processes. The G2 checkpoint mediates cell-cycle arrest (CCA) and the CHKREC activates cell-cycle progression (CCP) after resolution of DNA damage. Analysis of the FA-CHKREC network indicates that CHKREC drives DDA in FA cells, ignoring the presence of unrepaired DNA damage and allowing their division. Experimental inhibition of WIP1, a CHKREC component, in FA lymphoblast and cancer cell lines prevented division of FA cells, in agreement with the prediction of the model.

7.
Mol Genet Genomic Med ; 7(6): e710, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31044565

RESUMO

BACKGROUND: Fanconi anemia (FA) (OMIM #227650) is a rare hereditary disease characterized by genomic instability. The clinical phenotype involves malformations, bone marrow failure, and cancer predisposition. Genetic heterogeneity is a remarkable feature of FA; at least 22 FANC genes are known to cooperate in a unique FA/BRCA repair pathway. A common rule on the mutations found in these genes is allelic heterogeneity, except for mutations known to have arisen from a founder effect like the FANCC c.67delG in the Dutch Mennonite Community. Here, we present an 11-year-old male patient, member of the Mennonite Community of Tamaulipas México, with a clinical and cytogenetic diagnosis of FA. METHOD: Chromosome fragility test was performed in all siblings. Genomic DNA was obtained from peripheral blood samples. Sanger sequencing was used to identify the FANCC c.67delG mutation (NC_000009.11(NM_000136.2):c.67delG p.(Asp23IlefsTer23)) and its accompanying haplotype. RESULTS: The FANCC c.67delG mutation in 13 members of his family confirmed a FA diagnosis in two of his siblings and identified heterozygous carriers. Haplotype analysis supports that in this family, FA is caused by the founder mutation that initially appeared in Mennonite Dutch and followed this population's migrations through Canada and further to Mexico. CONCLUSION: The identification of the FANCC c.67delG mutation in this family not only allows proper genetic counseling, but it also grants the possibility to raise awareness of FA risk among the Mennonite community living in Mexico.


Assuntos
Proteína do Grupo de Complementação C da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Efeito Fundador , Criança , Anemia de Fanconi/patologia , Deleção de Genes , Heterozigoto , Humanos , Masculino , México , Linhagem
8.
Gynecol Endocrinol ; 35(9): 772-776, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30887870

RESUMO

Turner syndrome (TS) is a common genetic disorder. TS-phenotype includes short stature, gonadal dysgenesis, cardiac and kidney malformations, low bone mineral density (low-BMD) and thyroiditis. TS-phenotype varies from patient to patient and the cause is not clear, the genomic background may be an important contributor for this variability. Our aim was to identify the association of specific single nucleotide variants in the PTPN22, VDR, KL, and CYP27B1 genes and vitamin D-metabolism, heart malformation, renal malformation, thyroiditis, and low-BMD in 61 Mexican TS-patients. DNA samples were genotyped for SNVs: rs7975232 (VDR), rs9536282 (KL), rs4646536 (CYP27B1), and rs1599971 (PTPN22) using the KASP assay. Chi-square test under a recessive model and multifactorial dimensionality reduction method were used for analysis. We found a significant association between renal malformation and the rs9536282 (KL) variant and between rs4646536 (CYP27B1) and low-BMD, these variants may have modest effects on these characteristics but contribute to the variability of the TS phenotype. In addition, we identified gene-gene interactions between variants in genes KL, CYP27B1 and VDR related to vitamin D-metabolism and low-BMD in TS-patients. Our results support the idea that the genetic background of TS-patients contributes to the clinical variability seen in them.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Doenças Ósseas Metabólicas/genética , Glucuronidase/genética , Receptores de Calcitriol/genética , Síndrome de Turner/genética , Anormalidades Urogenitais/genética , Adolescente , Adulto , Densidade Óssea/genética , Doenças Ósseas Metabólicas/complicações , Doenças Ósseas Metabólicas/epidemiologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Epistasia Genética , Feminino , Frequência do Gene , Estudos de Associação Genética , Humanos , Lactente , Rim/anormalidades , Proteínas Klotho , Redes e Vias Metabólicas/genética , México/epidemiologia , Polimorfismo de Nucleotídeo Único , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Receptores de Calcitriol/metabolismo , Síndrome de Turner/complicações , Síndrome de Turner/epidemiologia , Anormalidades Urogenitais/complicações , Anormalidades Urogenitais/epidemiologia , Vitamina D/metabolismo , Adulto Jovem
9.
Mol Cytogenet ; 11: 30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760780

RESUMO

BACKGROUND: In countries where comparative genomic hybridization arrays (aCGH) and next generation sequencing are not widely available due to accessibility and economic constraints, conventional 400-500-band karyotyping is the first-line choice for the etiological diagnosis of patients with congenital malformations and intellectual disability. Conventional karyotype analysis can rule out chromosomal alterations greater than 10 Mb. However, some large structural abnormalities, such as derivative chromosomes, may go undetected when the analysis is performed at less than a 550-band resolution and the size and banding pattern of the interchanged segments are similar. Derivatives frequently originate from inter-chromosomal exchanges and sometimes are inherited from a parent who carries a reciprocal translocation. CASE PRESENTATION: We present two cases with derivative chromosomes involving a 9.1 Mb 5p deletion/14.8 Mb 10p duplication in the first patient and a 19.9 Mb 5p deletion/ 18.5 Mb 9p duplication in the second patient. These long chromosomal imbalances were ascertained by aCGH but not by conventional cytogenetics. Both patients presented with a deletion of the Cri du chat syndrome region and a duplication of another genomic region. Each patient had a unique clinical picture, and although they presented some features of Cri du chat syndrome, the phenotype did not conclusively point towards this diagnosis, although a chromosomopathy was suspected. CONCLUSIONS: These cases highlight the fundamental role of the clinical suspicion in guiding the approach for the etiological diagnosis of patients. Molecular cytogenetics techniques, such as aCGH, should be considered when the clinician suspects the presence of a chromosomal imbalance in spite of a normal karyotype.

10.
Toxicol In Vitro ; 51: 63-73, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29723631

RESUMO

Curcumin is a polyphenol compound extracted from Curcuma longa plant, is a molecule with pleiotropic effects that suppresses transformation, proliferation and metastasis of malignant tumors. Curcumin can cause different kinds of cell death depending of its concentration on the exposed cell type. Here we show that exposure of the glioblastoma cell line A172 to curcumin at 50 µM, the IC50, causes morphological change characteristic of paraptosis cell-death. Vesicles derived from the endoplasmic reticulum (ER) and low membrane potential of the mitochondria were constantly found in the exposed cells. Furthermore, changes in expression of the ER Stress Response (ERSR) genes IRE1 and ATF6, and the microRNAs (miRNAs) miR-27a, miR-222, miR-449 was observed after exposure to curcumin. AKT-Insulin and p53-BCL2 networks were predicted being modulated by the affected miRNAs. Furthermore, AKT protein levels reduction was confirmed. Our data, strongly suggest that curcumin exerts its cell-death properties by affecting the integrity of the reticulum, leading to paraptosis in the glioblastoma cells. These data unveils the versatility of curcumin to control cancer progression.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , MicroRNAs/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Genom Data ; 9: 70-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27408816

RESUMO

There is no information regarding the role of microRNAs in the development of the external ear in mammals. The purpose of this study was to determine the stage-specific expression of microRNA during external ear development in mice under normal conditions. GeneChip miRNA 3.0 arrays by Affymetrix were used to obtain miRNA expression profiles from mice fetal pinnae and back skin tissues at 13.5 days-post-coitum (dpc) and 14.5 dpc. Biological triplicates for each tissue were analyzed; one litter represents one biological replica, each litter had 16 fetuses on average. The results were analyzed with Affymetrix's Transcriptome Analysis Console software to identify differentially expressed miRNAs. The inquiry showed significant differential expression of 25 miRNAs at 13.5 dpc and 31 at 14.5 dpc, some of these miRNAs were predicted to target genes implicated in external ear development. One example is mmu-miR-10a whose low expression in pinnae is known to impact ear development by modulating Hoxa1 mRNA levels Garzon et al. (2006), Gavalas et al. (1998) [1], [2]. Other findings like the upregulation of mmu-miR-200c and mmu-miR-205 in the pinnae tissues of healthy mice are in agreement with what has been reported in human patients with microtia, in which down regulation of both miRNAs has been found Li et al. (2013) [3]. This study uncovered a spatiotemporal pattern of miRNA expression in the external ear, which results from continuous transcriptional changes during normal development of body structures. All microarray data are available at the Gene Expression Omnibus (GEO) at NCBI under accession number GSE64945.

12.
Theor Biol Med Model ; 12: 26, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26573569

RESUMO

BACKGROUND: Gonadal sex determination (GSD) in humans is a complex biological process that takes place in early stages of embryonic development when the bipotential gonadal primordium (BGP) differentiates towards testes or ovaries. This decision is directed by one of two distinct pathways embedded in a GSD network activated in a population of coelomic epithelial cells, the Sertoli progenitor cells (SPC) and the granulosa progenitor cells (GPC). In males, the pathway is activated when the Sex-Determining Region Y (SRY) gene starts to be expressed, whereas in females the WNT4/ ß-catenin pathway promotes the differentiation of the GPCs towards ovaries. The interactions and dynamics of the elements that constitute the GSD network are poorly understood, thus our group is interested in inferring the general architecture of this network as well as modeling the dynamic behavior of a set of genes associated to this process under wild-type and mutant conditions. METHODS: We reconstructed the regulatory network of GSD with a set of genes directly associated with the process of differentiation from SPC and GPC towards Sertoli and granulosa cells, respectively. These genes are experimentally well-characterized and the effects of their deficiency have been clinically reported. We modeled this GSD network as a synchronous Boolean network model (BNM) and characterized its attractors under wild-type and mutant conditions. RESULTS: Three attractors with a clear biological meaning were found; one of them corresponding to the currently known gene expression pattern of Sertoli cells, the second correlating to the granulosa cells and, the third resembling a disgenetic gonad. CONCLUSIONS: The BNM of GSD that we present summarizes the experimental data on the pathways for Sertoli and granulosa establishment and sheds light on the overall behavior of a population of cells that differentiate within the developing gonad. With this model we propose a set of regulatory interactions needed to activate either the SRY or the WNT4/ ß-catenin pathway as well as their downstream targets, which are critical for further sex differentiation. In addition, we observed a pattern of altered regulatory interactions and their dynamics that lead to some disorders of sex development (DSD).


Assuntos
Modelos Biológicos , Processos de Determinação Sexual , Diferenciação Celular , Linhagem da Célula , Transtorno 46,XY do Desenvolvimento Sexual/patologia , Feminino , Fator de Transcrição GATA4/metabolismo , Gônadas , Células da Granulosa/citologia , Humanos , Masculino , Células de Sertoli/citologia
13.
Theor Biol Med Model ; 12: 19, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26385365

RESUMO

BACKGROUND: The FA/BRCA pathway repairs DNA interstrand crosslinks. Mutations in this pathway cause Fanconi anemia (FA), a chromosome instability syndrome with bone marrow failure and cancer predisposition. Upon DNA damage, normal and FA cells inhibit the cell cycle progression, until the G2/M checkpoint is turned off by the checkpoint recovery, which becomes activated when the DNA damage has been repaired. Interestingly, highly damaged FA cells seem to override the G2/M checkpoint. In this study we explored with a Boolean network model and key experiments whether checkpoint recovery activation occurs in FA cells with extensive unrepaired DNA damage. METHODS: We performed synchronous/asynchronous simulations of the FA/BRCA pathway Boolean network model. FA-A and normal lymphoblastoid cell lines were used to study checkpoint and checkpoint recovery activation after DNA damage induction. The experimental approach included flow cytometry cell cycle analysis, cell division tracking, chromosome aberration analysis and gene expression analysis through qRT-PCR and western blot. RESULTS: Computational simulations suggested that in FA mutants checkpoint recovery activity inhibits the checkpoint components despite unrepaired DNA damage, a behavior that we did not observed in wild-type simulations. This result implies that FA cells would eventually reenter the cell cycle after a DNA damage induced G2/M checkpoint arrest, but before the damage has been fixed. We observed that FA-A cells activate the G2/M checkpoint and arrest in G2 phase, but eventually reach mitosis and divide with unrepaired DNA damage, thus resolving the initial checkpoint arrest. Based on our model result we look for ectopic activity of checkpoint recovery components. We found that checkpoint recovery components, such as PLK1, are expressed to a similar extent as normal undamaged cells do, even though FA-A cells harbor highly damaged DNA. CONCLUSIONS: Our results show that FA cells, despite extensive DNA damage, do not loss the capacity to express the transcriptional and protein components of checkpoint recovery that might eventually allow their division with unrepaired DNA damage. This might allow cell survival but increases the genomic instability inherent to FA individuals and promotes cancer.


Assuntos
Ciclo Celular , Dano ao DNA , Reparo do DNA , Anemia de Fanconi/patologia , Western Blotting , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Reparo do DNA/efeitos dos fármacos , Densitometria , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Mitomicina/farmacologia , Mutação/genética
14.
Environ Mol Mutagen ; 56(5): 457-67, 2015 06.
Artigo em Inglês | MEDLINE | ID: mdl-25663157

RESUMO

Fanconi's anemia (FA) is a recessive disease; 16 genes are currently recognized in FA. FA proteins participate in the FA/BRCA pathway that plays a crucial role in the repair of DNA damage induced by crosslinking compounds. Hydroxyurea (HU) is an agent that induces replicative stress by inhibiting ribonucleotide reductase (RNR), which synthesizes deoxyribonucleotide triphosphates (dNTPs) necessary for DNA replication and repair. HU is known to activate the FA pathway; however, its clastogenic effects are not well characterized. We have investigated the effects of HU treatment alone or in sequential combination with mitomycin-C (MMC) on FA patient-derived lymphoblastoid cell lines from groups FA-A, B, C, D1/BRCA2, and E and on lymphocytes from two unclassified FA patients. All FA cells showed a significant increase (P < 0.05) in chromosomal aberrations following treatment with HU during the last 3 h before mitosis. Furthermore, when FA cells previously exposed to MMC were treated with HU, we observed an increase of MMC-induced DNA damage that was characterized by high occurrence of DNA breaks and a reduction in rejoined chromosomal aberrations. These findings show that exposure to HU during G2 induces chromosomal aberrations by a mechanism that is independent of its well-known role in replication fork stalling during S-phase and that HU interfered mainly with the rejoining process of DNA damage. We suggest that impaired oxidative stress response, lack of an adequate amount of dNTPs for DNA repair due to RNR inhibition, and interference with cell cycle control checkpoints underlie the clastogenic activity of HU in FA cells. Environ. Mol. Mutagen. 56:457-467, 2015. © 2015 Wiley Periodicals, Inc.


Assuntos
Aberrações Cromossômicas/induzido quimicamente , Anemia de Fanconi/sangue , Fase G2/efeitos dos fármacos , Hidroxiureia/toxicidade , Linfócitos/efeitos dos fármacos , Mitomicina/toxicidade , Mutagênicos/toxicidade , Linhagem Celular , Análise Citogenética , Sinergismo Farmacológico , Anemia de Fanconi/genética , Fase G2/genética , Voluntários Saudáveis , Humanos , Linfócitos/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética
15.
Int J Dev Biol ; 59(10-12): 497-503, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26864490

RESUMO

MicroRNAs (miRNAs) comprise a class of approximately 22 nucleotide regulatory non-coding RNAs that play several roles in diverse biological processes. Recent reports suggest that embryonic development in mammals is accompanied by dynamic changes in miRNA expression; however, there is no information regarding the role of miRNAs in the development of the external ear. The aim of this study was to determine the stage-specific expression of miRNAs during mouse external ear development in order to identify potentially implicated miRNAs along with their possible targets. miRNA expression profiles from fetal mice pinnae and back skin tissues at 13.5 dpc and 14.5 dpc were obtained using an Affymetrix GeneChip miRNA 3.0 array. Biological triplicates for both tissues, each collected from a litter averaging 16 fetuses, were analyzed. The results were analyzed with Affymetrix's Transcriptome Analysis Console software to identify differentially expressed miRNAs. We observed differential expression of 40 miRNAs including some predicted to target genes implicated in external ear development, such as mmu-miR-10a, an miRNA known to modulate Hoxa1 mRNA levels, and mmu-miR-200c and mmu-miR-205. To our knowledge, this is the first miRNA expression profiling study of external ear development in mammals. These data could set the basis to understand the implications of miRNAs in normal external ear development.


Assuntos
Orelha Externa/crescimento & desenvolvimento , Orelha Externa/metabolismo , MicroRNAs/genética , Organogênese/genética , RNA Mensageiro/genética , Animais , Biologia Computacional , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Perfilação da Expressão Gênica , Hibridização In Situ , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Bioinformatics ; 28(6): 858-66, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22267503

RESUMO

MOTIVATION: Fanconi anemia (FA) is a chromosomal instability syndrome originated by inherited mutations that impair the Fanconi Anemia/Breast Cancer (FA/BRCA) pathway, which is committed to the repair of DNA interstrand cross-links (ICLs). The disease displays increased spontaneous chromosomal aberrations and hypersensitivity to agents that create DNA interstrand cross-links. In spite of DNA damage, FA/BRCA-deficient cells are able to progress throughout the cell cycle, probably due to the activity of alternative DNA repair pathways, or due to defects in the checkpoints that monitor DNA integrity. RESULTS: We propose a Boolean network model of the FA/BRCA pathway, Checkpoint proteins and some alternative DNA repair pathways. To our knowledge, this is the largest network model incorporating a DNA repair pathway. Our model is able to simulate the ICL repair process mediated by the FA/BRCA pathway, the activation of Checkpoint proteins observed by recurrent DNA damage, as well as the repair of DNA double-strand breaks and DNA adducts. We generated a series of simulations for mutants, some of which have never been reported and thus constitute predictions about the function of the FA/BRCA pathway. Finally, our model suggests alternative DNA repair pathways that become active whenever the FA/BRCA pathway is defective.


Assuntos
Reparo do DNA , Anemia de Fanconi/metabolismo , Modelos Biológicos , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular , Células Cultivadas , Dano ao DNA , Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Instabilidade Genômica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...