Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biophys J ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38297834

RESUMO

De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative machine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from, the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to design peptide sequences that can fold into the ß-hairpin secondary structure. This deep neural network model is designed to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of 20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of ß hairpin from α helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial ß-hairpin peptide sequences with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant databases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary limits.

2.
Nat Commun ; 15(1): 155, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168102

RESUMO

Studies of folded-to-misfolded transitions using model protein systems reveal a range of unfolding needed for exposure of amyloid-prone regions for subsequent fibrillization. Here, we probe the relationship between unfolding and aggregation for glaucoma-associated myocilin. Mutations within the olfactomedin domain of myocilin (OLF) cause a gain-of-function, namely cytotoxic intracellular aggregation, which hastens disease progression. Aggregation by wild-type OLF (OLFWT) competes with its chemical unfolding, but only below the threshold where OLF loses tertiary structure. Representative moderate (OLFD380A) and severe (OLFI499F) disease variants aggregate differently, with rates comparable to OLFWT in initial stages of unfolding, and variants adopt distinct partially folded structures seen along the OLFWT urea-unfolding pathway. Whether initiated with mutation or chemical perturbation, unfolding propagates outward to the propeller surface. In sum, for this large protein prone to amyloid formation, the requirement for a conformational change to promote amyloid fibrillization leads to direct competition between unfolding and aggregation.


Assuntos
Amiloide , Glaucoma , Humanos , Amiloide/metabolismo , Glaucoma/genética , Mutação , Peptídeos beta-Amiloides/genética , Proteínas Amiloidogênicas/genética , Dobramento de Proteína
3.
J Biol Chem ; 299(8): 104947, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354971

RESUMO

Activated G protein-coupled receptors promote the dissociation of heterotrimeric G proteins into Gα and Gßγ subunits that bind to effector proteins to drive intracellular signaling responses. In yeast, Gßγ subunits coordinate the simultaneous activation of multiple signaling axes in response to mating pheromones, including MAP kinase (MAPK)-dependent transcription, cell polarization, and cell cycle arrest responses. The Gγ subunit in this complex contains an N-terminal intrinsically disordered region that governs Gßγ-dependent signal transduction in yeast and mammals. Here, we demonstrate that N-terminal intrinsic disorder is likely an ancestral feature that has been conserved across different Gγ subtypes and organisms. To understand the functional contribution of structural disorder in this region, we introduced precise point mutations that produce a stepwise disorder-to-order transition in the N-terminal tail of the canonical yeast Gγ subunit, Ste18. Mutant tail structures were confirmed using circular dichroism and molecular dynamics and then substituted for the wildtype gene in yeast. We find that increasing the number of helix-stabilizing mutations, but not isometric mutation controls, has a negative and proteasome-independent effect on Ste18 protein levels as well as a differential effect on pheromone-induced levels of active MAPK/Fus3, but not MAPK/Kss1. When expressed at wildtype levels, we further show that mutants with an alpha-helical N terminus exhibit a counterintuitive shift in Gßγ signaling that reduces active MAPK/Fus3 levels whilst increasing cell polarization and cell cycle arrest. These data reveal a role for Gγ subunit intrinsically disordered regions in governing the balance between multiple Gßγ signaling axes.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Transdução de Sinais , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
4.
Metallomics ; 15(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36669767

RESUMO

Heme b (iron protoporphyrin IX) plays important roles in biology as a metallocofactor and signaling molecule. However, the targets of heme signaling and the network of proteins that mediate the exchange of heme from sites of synthesis or uptake to heme dependent or regulated proteins are poorly understood. Herein, we describe a quantitative mass spectrometry (MS)-based chemoproteomics strategy to identify exchange labile hemoproteins in human embryonic kidney HEK293 cells that may be relevant to heme signaling and trafficking. The strategy involves depleting endogenous heme with the heme biosynthetic inhibitor succinylacetone (SA), leaving putative heme-binding proteins in their apo-state, followed by the capture of those proteins using hemin-agarose resin, and finally elution and identification by MS. By identifying only those proteins that interact with high specificity to hemin-agarose relative to control beaded agarose in an SA-dependent manner, we have expanded the number of proteins and ontologies that may be involved in binding and buffering labile heme or are targets of heme signaling. Notably, these include proteins involved in chromatin remodeling, DNA damage response, RNA splicing, cytoskeletal organization, and vesicular trafficking, many of which have been associated with heme through complementary studies published recently. Taken together, these results provide support for the emerging role of heme in an expanded set of cellular processes from genome integrity to protein trafficking and beyond.


Assuntos
Hemina , Proteoma , Humanos , Hemina/metabolismo , Proteínas Ligantes de Grupo Heme , Proteoma/metabolismo , Proteômica , Células HEK293 , Heme/metabolismo
5.
Methods Mol Biol ; 2499: 221-260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696084

RESUMO

Protein posttranslational modifications (PTMs) are a rapidly expanding feature class of significant importance in cell biology. Due to a high burden of experimental proof, the number of functionals PTMs in the eukaryotic proteome is currently underestimated. Furthermore, not all PTMs are functionally equivalent. Computational approaches that can confidently recommend PTMs of probable function can improve the heuristics of PTM investigation and alleviate these problems. To address this need, we developed SAPH-ire: a multifeature heuristic neural network model that takes community wisdom into account by recommending experimental PTMs similar to those which have previously been established as having regulatory impact. Here, we describe the principle behind the SAPH-ire model, how it is developed, how we evaluate its performance, and important caveats to consider when building and interpreting such models. Finally, we discus current limitations of functional PTM prediction models and highlight potential mechanisms for their improvement.


Assuntos
Aprendizado de Máquina , Processamento de Proteína Pós-Traducional , Redes Neurais de Computação , Proteoma
6.
J Am Coll Health ; : 1-5, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35623055

RESUMO

Increasing rates of depression, anxiety, substance use, and suicidal thoughts and behaviors among college students were exacerbated by the COVID-19 pandemic. This report describes how components of the Johns Hopkins Suicide Prevention Awareness, Response and Coordination (JH-SPARC) Project aligned with a multi-faceted strategy for suicide prevention. Key programs included suicide screening, gatekeeper trainings, and the use of third-party mental health services. Regarding suicide screening outcomes, staff sent 36,148 individual emails inviting students and trainees to participate in stress and depression screening. This approach garnered 2,634 responses and connected 130 students to care, 66 of whom (50.8%) indicated suicidal thoughts, plans, or behaviors. We estimate this screening cost $2.97 per student. Important lessons included the reliance on virtual platforms and the need to coordinate efforts across multiple campuses. Our manuscript provides an example of a transferable strategy for suicide prevention on college campuses in the pandemic era.

7.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969852

RESUMO

Cu/Zn superoxide dismutase (Sod1) is a highly conserved and abundant antioxidant enzyme that detoxifies superoxide (O2•-) by catalyzing its conversion to dioxygen (O2) and hydrogen peroxide (H2O2). Using Saccharomyces cerevisiae and mammalian cells, we discovered that a major aspect of the antioxidant function of Sod1 is to integrate O2 availability to promote NADPH production. The mechanism involves Sod1-derived H2O2 oxidatively inactivating the glycolytic enzyme, GAPDH, which in turn reroutes carbohydrate flux to the oxidative phase of the pentose phosphate pathway (oxPPP) to generate NADPH. The aerobic oxidation of GAPDH is dependent on and rate-limited by Sod1. Thus, Sod1 senses O2 via O2•- to balance glycolytic and oxPPP flux, through control of GAPDH activity, for adaptation to life in air. Importantly, this mechanism for Sod1 antioxidant activity requires the bulk of cellular Sod1, unlike for its role in protection against O2•- toxicity, which only requires <1% of total Sod1. Using mass spectrometry, we identified proteome-wide targets of Sod1-dependent redox signaling, including numerous metabolic enzymes. Altogether, Sod1-derived H2O2 is important for antioxidant defense and a master regulator of metabolism and the thiol redoxome.


Assuntos
NADP/metabolismo , Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase/metabolismo , Animais , Antioxidantes/metabolismo , Glicólise , Peróxido de Hidrogênio/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Superóxidos/metabolismo
8.
Sci Signal ; 14(688)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158397

RESUMO

Intrinsically disordered regions (IDRs) in proteins are often targets of combinatorial posttranslational modifications, which serve to regulate protein structure and function. Emerging evidence suggests that the N-terminal tails of G protein γ subunits, which are essential components of heterotrimeric G proteins, are intrinsically disordered, phosphorylation-dependent determinants of G protein signaling. Here, we found that the yeast Gγ subunit Ste18 underwent combinatorial, multisite phosphorylation events within its N-terminal IDR. G protein-coupled receptor (GPCR) activation and osmotic stress induced phosphorylation at Ser7, whereas glucose and acid stress induced phosphorylation at Ser3, which was a quantitative indicator of intracellular pH. Each site was phosphorylated by a distinct set of kinases, and phosphorylation of one site affected phosphorylation of the other, as determined through exposure to serial stimuli and through phosphosite mutagenesis. Last, we showed that phosphorylation resulted in changes in IDR structure and that different combinations of phosphorylation events modulated the activation rate and amplitude of the downstream mitogen-activated protein kinase Fus3. These data place Gγ subunits among intrinsically disordered proteins that undergo combinatorial posttranslational modifications that govern signaling pathway output.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP , Proteínas de Saccharomyces cerevisiae , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
9.
Psychiatr Serv ; 71(12): 1239-1244, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019858

RESUMO

OBJECTIVE: The number of patients seeking treatment in emergency departments (EDs) for mental health reasons is rising, and these patients are often kept in the ED until they can be treated or discharged, leading to overcrowding. Telepsychiatry may alleviate overcrowding by increasing the rate of discharges home. METHODS: ED discharge records for 86,931 patients with psychiatric symptoms were examined to compare patient disposition and length of stay (LOS) between times when the North Carolina Statewide Telepsychiatry Program (NC-STeP) program was available or unavailable. RESULTS: For patients with a LOS of >2 days (N=3,144) and when NC-STeP was available, 62% (N=1,941) were discharged home, and 29% (N=922) were transferred to a psychiatric facility. When NC-STeP was unavailable (N=2,662), 43% (N=1,139) of these patients were discharged home, and 46% (N=1,230) were transferred to a psychiatric facility. For patients with a LOS of 1-2 days and when NC-STeP was available (N=41,713), 77.0% (N=32,131) were discharged home, and 15.4% (N=6,441) were transferred to a psychiatric facility, compared with 74.2% (N=29,237) discharged home and 13.9% (N=5,495) transferred to a psychiatric facility when NC-STeP was unavailable (N=39,412). The increases in discharges home and decreases in referrals to psychiatric facilities when NC-STeP was available were statistically significant for patients in both groups (p<0.001). CONCLUSIONS: Results suggest that telepsychiatry programs such as NC-STeP increase the number of discharges home and decrease transfers to psychiatric facilities, likely promoting patient satisfaction and improving ED efficiency.


Assuntos
Transtornos Mentais , Serviços de Saúde Mental , Serviço Hospitalar de Emergência , Humanos , Tempo de Internação , Transtornos Mentais/terapia , North Carolina
10.
J Am Coll Health ; 68(8): 815-823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31210585

RESUMO

OBJECTIVE: To evaluate whether collegiate athletes and nonathlete college students differ in nonsuicidal self-injury (NSSI), suicidal ideation, suicide attempt, and help-seeking behaviors. Participants: 165,210 respondents to the American College Health Association's National College Health Assessment (NCHA), a survey administered to college students by participating institutions during Fall 2011 to Spring 2015. Methods: Single-level binary logistic regression with equality of coefficients tests and chi-square analyses. Results: The models for NSSI and suicide attempt differed slightly between student-athletes and nonathletes. Most notably, stress is a stronger correlate of NSSI (Z = 3.03, p < .01) for nonathletes while difficulties with social relationships is a stronger correlate of suicide attempt for student-athletes (Z=-3.13, p < .01). Conclusion: Our findings highlight the salience of relationship problems as a correlate with suicide attempts in student-athletes. Difficulty in romantic or other social relationships could be a marker of risk or an identifiable, actionable target for preventing future suicidal behaviors among collegiate athletes.


Assuntos
Atletas/psicologia , Atletas/estatística & dados numéricos , Comportamento Autodestrutivo/psicologia , Estudantes/psicologia , Estudantes/estatística & dados numéricos , Ideação Suicida , Tentativa de Suicídio/psicologia , Tentativa de Suicídio/estatística & dados numéricos , Adulto , Feminino , Humanos , Modelos Logísticos , Masculino , Fatores de Risco , Inquéritos e Questionários , Estados Unidos , Universidades/estatística & dados numéricos , Adulto Jovem
11.
DNA Repair (Amst) ; 86: 102763, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31821952

RESUMO

Double strand-breaks (DSBs) of genomic DNA caused by ionizing radiation or mutagenic chemicals are a common source of mutation, recombination, chromosomal aberration, and cell death. Linker histones are DNA packaging proteins with established roles in chromatin compaction, gene transcription, and in homologous recombination (HR)-mediated DNA repair. Using a machine-learning model for functional prioritization of eukaryotic post-translational modifications (PTMs) in combination with genetic and biochemical experiments with the yeast linker histone, Hho1, we discovered that site-specific phosphorylation sites regulate HR and HR-mediated DSB repair. Five total sites were investigated (T10, S65, S141, S173, and S174), ranging from high to low function potential as determined by the model. Of these, we confirmed S173/174 are phosphorylated in yeast by mass spectrometry and found no evidence of phosphorylation at the other sites. Phospho-nullifying mutations at these two sites results in a significant decrease in HR-mediated DSB repair templated either with oligonucleotides or a homologous chromosome, while phospho-mimicing mutations have no effect. S65, corresponding to a mammalian phosphosite that is conserved in yeast, exhibited similar effects. None of the mutations affected base- or nucleotide-excision repair, nor did they disrupt non-homologous end joining or RNA-mediated repair of DSBs when sequence heterology between the break and repair template strands was low. More extensive analysis of the S174 phospho-null mutant revealed that its repression of HR and DSB repair is proportional to the degree of sequence heterology between DSB ends and the HR repair template. Taken together, these data demonstrate the utility of machine learning for the discovery of functional PTM hotspots, reveal linker histone phosphorylation sites necessary for HR and HR-mediated DSB repair, and provide insight into the context-dependent control of DNA integrity by the yeast linker histone Hho1.


Assuntos
DNA Fúngico/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Quebras de DNA de Cadeia Dupla , Histonas/química , Histonas/genética , Recombinação Homóloga , Aprendizado de Máquina , Mutação , Fosforilação , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
12.
Sci Rep ; 9(1): 12769, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484937

RESUMO

The inherited form of open angle glaucoma arises due to a toxic gain-of-function intracellular misfolding event involving a mutated myocilin olfactomedin domain (OLF). Mutant myocilin is recognized by the endoplasmic reticulum (ER)-resident heat shock protein 90 paralog, glucose regulated protein 94 (Grp94), but their co-aggregation precludes mutant myocilin clearance by ER-associated degradation. When the Grp94-mutant myocilin interaction is abrogated by inhibitors or siRNA, mutant myocilin is efficiently degraded. Here we dissected Grp94 into component domains (N, NM, MC) to better understand the molecular factors governing its interaction with OLF. We show that the Grp94 N-terminal nucleotide-binding N domain is responsible for accelerating OLF aggregation in vitro. Upon inhibiting the isolated N domain pharmacologically or removing the Pre-N terminal 57 residues from full-length Grp94, OLF aggregation rates revert to those seen for OLF alone, but only pharmacological inhibition rescues co-aggregation. The Grp94-OLF interaction is below the detection limit of fluorescence polarization measurements, but chemical crosslinking paired with mass spectrometry analyses traps a reproducible interaction between OLF and the Grp94 N domain, as well as between OLF and the Grp94 M domain. The emerging molecular-level picture of quinary interactions between Grp94 and myocilin points to a role for the far N-terminal sequence of the Grp94 N domain and a cleft in the M domain. Our work further supports drug discovery efforts to inhibit these interactions as a strategy to treat myocilin-associated glaucoma.


Assuntos
Amiloide/química , Proteínas do Citoesqueleto/química , Proteínas do Olho/química , Glicoproteínas/química , Glicoproteínas de Membrana/química , Mutação , Agregação Patológica de Proteínas , Amiloide/genética , Amiloide/metabolismo , Animais , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Cães , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Domínios Proteicos
13.
J Cell Sci ; 132(19)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31515279

RESUMO

Collective invasion, the coordinated movement of cohesive packs of cells, has become recognized as a major mode of metastasis for solid tumors. These packs are phenotypically heterogeneous and include specialized cells that lead the invasive pack and others that follow behind. To better understand how these unique cell types cooperate to facilitate collective invasion, we analyzed transcriptomic sequence variation between leader and follower populations isolated from the H1299 non-small cell lung cancer cell line using an image-guided selection technique. We now identify 14 expressed mutations that are selectively enriched in leader or follower cells, suggesting a novel link between genomic and phenotypic heterogeneity within a collectively invading tumor cell population. Functional characterization of two phenotype-specific candidate mutations showed that ARP3 enhances collective invasion by promoting the leader cell phenotype and that wild-type KDM5B suppresses chain-like cooperative behavior. These results demonstrate an important role for distinct genetic variants in establishing leader and follower phenotypes and highlight the necessity of maintaining a capacity for phenotypic plasticity during collective cancer invasion.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Invasividade Neoplásica/genética , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Heterogeneidade Genética , Genômica , Humanos , Neoplasias Pulmonares/patologia , Microscopia , Invasividade Neoplásica/patologia , RNA-Seq
14.
Matrix Biol ; 82: 86-104, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31004743

RESUMO

The extracellular matrix (ECM) microenvironment is increasingly implicated in the instruction of pathologically relevant cell behaviors, from aberrant transdifferentation to invasion and beyond. Indeed, pathologic ECMs possess a panoply of alterations that provide deleterious instructions to resident cells. Here we demonstrate the precise manner in which the ECM protein fibronectin (FN) undergoes the posttranslational modification citrullination in response to peptidyl-arginine deiminase (PAD), an enzyme associated with innate immune cell activity and implicated in systemic ECM-centric diseases, like cancer, fibrosis and rheumatoid arthritis. FN can be citrullinated in at least 24 locations, 5 of which reside in FN's primary cell-binding domain. Citrullination of FN alters integrin clustering and focal adhesion stability with a concomitant enhancement in force-triggered integrin signaling along the FAK-Src and ILK-Parvin pathways within fibroblasts. In vitro migration and in vivo wound healing studies demonstrate the ability of citrullinated FN to support a more migratory/invasive phenotype that enables more rapid wound closure. These findings highlight the potential of ECM, particularly FN, to "record" inflammatory insults via post-translational modification by inflammation-associated enzymes that are subsequently "read" by resident tissue fibroblasts, establishing a direct link between inflammation and tissue homeostasis and pathogenesis through the matrix.


Assuntos
Fibronectinas/metabolismo , Adesões Focais/metabolismo , Integrinas/metabolismo , Células Estromais/citologia , Animais , Sítios de Ligação , Adesão Celular , Movimento Celular , Células Cultivadas , Citrulinação , Matriz Extracelular/metabolismo , Feminino , Fibronectinas/química , Humanos , Masculino , Camundongos , Desiminases de Arginina em Proteínas/metabolismo , Transdução de Sinais , Células Estromais/metabolismo
15.
J Biol Chem ; 293(32): 12378-12393, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29921585

RESUMO

Protoheme (hereafter referred to as heme) is an essential cellular cofactor and signaling molecule that is also potentially cytotoxic. To mitigate heme toxicity, heme synthesis and degradation are tightly coupled to heme utilization in order to limit the intracellular concentration of "free" heme. Such a model, however, would suggest that a readily accessible steady-state, bioavailable labile heme (LH) pool is not required for supporting heme-dependent processes. Using the yeast Saccharomyces cerevisiae as a model and fluorescent heme sensors, site-specific heme chelators, and molecular genetic approaches, we found here that 1) yeast cells preferentially use LH in heme-depleted conditions; 2) sequestration of cytosolic LH suppresses heme signaling; and 3) lead (Pb2+) stress contributes to a decrease in total heme, but an increase in LH, which correlates with increased heme signaling. We also observed that the proteasome is involved in the regulation of the LH pool and that loss of proteasomal activity sensitizes cells to Pb2+ effects on heme homeostasis. Overall, these findings suggest an important role for LH in supporting heme-dependent functions in yeast physiology.


Assuntos
Regulação Fúngica da Expressão Gênica , Heme/metabolismo , Chumbo/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Disponibilidade Biológica , Homeostase , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transdução de Sinais
16.
Pharmacol Rev ; 70(3): 446-474, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29871944

RESUMO

Regulators of G protein signaling (RGS) proteins modulate the physiologic actions of many neurotransmitters, hormones, and other signaling molecules. Human RGS proteins comprise a family of 20 canonical proteins that bind directly to G protein-coupled receptors/G protein complexes to limit the lifetime of their signaling events, which regulate all aspects of cell and organ physiology. Genetic variations account for diverse human traits and individual predispositions to disease. RGS proteins contribute to many complex polygenic human traits and pathologies such as hypertension, atherosclerosis, schizophrenia, depression, addiction, cancers, and many others. Recent analysis indicates that most human diseases are due to extremely rare genetic variants. In this study, we summarize physiologic roles for RGS proteins and links to human diseases/traits and report rare variants found within each human RGS protein exome sequence derived from global population studies. Each RGS sequence is analyzed using recently described bioinformatics and proteomic tools for measures of missense tolerance ratio paired with combined annotation-dependent depletion scores, and protein post-translational modification (PTM) alignment cluster analysis. We highlight selected variants within the well-studied RGS domain that likely disrupt RGS protein functions and provide comprehensive variant and PTM data for each RGS protein for future study. We propose that rare variants in functionally sensitive regions of RGS proteins confer profound change-of-function phenotypes that may contribute, in newly appreciated ways, to complex human diseases and/or traits. This information provides investigators with a valuable database to explore variation in RGS protein function, and for targeting RGS proteins as future therapeutic targets.


Assuntos
Proteínas RGS/fisiologia , Animais , Doença , Variação Genética , Humanos , Terapia de Alvo Molecular
17.
Cell Rep ; 23(5): 1504-1515, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719261

RESUMO

Heterotrimeric G proteins (Gαßγ) are essential transducers in G protein signaling systems in all eukaryotes. In yeast, G protein signaling differentially activates mitogen-activated protein kinases (MAPKs)-Fus3 and Kss1-a phenomenon controlled by plasma membrane (PM) association of the scaffold protein Ste5. Here, we show that phosphorylation of the yeast Gγ subunit (Ste18), together with Fus3 docking on Ste5, controls the rate and stability of Ste5/PM association. Disruption of either element alone by point mutation has mild but reciprocal effects on MAPK activation. Disabling both elements results in ultra-fast and stable bulk Ste5/PM localization and Fus3 activation that is 6 times faster and 4 times more amplified compared to wild-type cells. These results further resolve the mechanism by which MAPK negative feedback phosphorylation controls pathway activation and provides compelling evidence that Gγ subunits can serve as intrinsic regulators of G protein signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Fosforilação/fisiologia , Mutação Puntual , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
J Biol Chem ; 293(13): 4752-4766, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382719

RESUMO

Heterotrimeric G protein complexes are molecular switches relaying extracellular signals sensed by G protein-coupled receptors (GPCRs) to downstream targets in the cytoplasm, which effect cellular responses. In the plant heterotrimeric GTPase cycle, GTP hydrolysis, rather than nucleotide exchange, is the rate-limiting reaction and is accelerated by a receptor-like regulator of G signaling (RGS) protein. We hypothesized that posttranslational modification of the Gα subunit in the G protein complex regulates the RGS-dependent GTPase cycle. Our structural analyses identified an invariant phosphorylated tyrosine residue (Tyr166 in the Arabidopsis Gα subunit AtGPA1) located in the intramolecular domain interface where nucleotide binding and hydrolysis occur. We also identified a receptor-like kinase that phosphorylates AtGPA1 in a Tyr166-dependent manner. Discrete molecular dynamics simulations predicted that phosphorylated Tyr166 forms a salt bridge in this interface and potentially affects the RGS protein-accelerated GTPase cycle. Using a Tyr166 phosphomimetic substitution, we found that the cognate RGS protein binds more tightly to the GDP-bound Gα substrate, consequently reducing its ability to accelerate GTPase activity. In conclusion, we propose that phosphorylation of Tyr166 in AtGPA1 changes the binding pattern with AtRGS1 and thereby attenuates the steady-state rate of the GTPase cycle. We coin this newly identified mechanism "substrate phosphoswitching."


Assuntos
Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas RGS/imunologia , Substituição de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Mutação de Sentido Incorreto , Fosforilação , Proteínas RGS/genética , Tirosina/genética , Tirosina/metabolismo
19.
J Biol Chem ; 293(13): 4653-4663, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382721

RESUMO

Mechanistic details of intramembrane aspartyl protease (IAP) chemistry, which is central to many biological and pathogenic processes, remain largely obscure. Here, we investigated the in vitro kinetics of a microbial intramembrane aspartyl protease (mIAP) fortuitously acting on the renin substrate angiotensinogen and the C-terminal transmembrane segment of amyloid precursor protein (C100), which is cleaved by the presenilin subunit of γ-secretase, an Alzheimer disease (AD)-associated IAP. mIAP variants with substitutions in active-site and putative substrate-gating residues generally exhibit impaired, but not abolished, activity toward angiotensinogen and retain the predominant cleavage site (His-Thr). The aromatic ring, but not the hydroxyl substituent, within Tyr of the catalytic Tyr-Asp (YD) motif plays a catalytic role, and the hydrolysis reaction incorporates bulk water as in soluble aspartyl proteases. mIAP hydrolyzes the transmembrane region of C100 at two major presenilin cleavage sites, one corresponding to the AD-associated Aß42 peptide (Ala-Thr) and the other to the non-pathogenic Aß48 (Thr-Leu). For the former site, we observed more favorable kinetics in lipid bilayer-mimicking bicelles than in detergent solution, indicating that substrate-lipid and substrate-enzyme interactions both contribute to catalytic rates. High-resolution MS analyses across four substrates support a preference for threonine at the scissile bond. However, results from threonine-scanning mutagenesis of angiotensinogen demonstrate a competing positional preference for cleavage. Our results indicate that IAP cleavage is controlled by both positional and chemical factors, opening up new avenues for selective IAP inhibition for therapeutic interventions.


Assuntos
Proteínas Arqueais , Ácido Aspártico Proteases , Methanomicrobiaceae , Presenilinas , Proteólise , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Ácido Aspártico Proteases/química , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Methanomicrobiaceae/química , Methanomicrobiaceae/genética , Methanomicrobiaceae/metabolismo , Presenilinas/química , Presenilinas/genética , Presenilinas/metabolismo
20.
Aging (Albany NY) ; 9(12): 2587-2609, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29273704

RESUMO

Using a systems-based approach, we have identified several genes not previously evaluated for a role(s) in chronological aging. Here, we have thoroughly investigated the chronological lifespan (CLS) of three of these genes (FUS3, KSS1 and HOG1) and their protein products, each of which have well-defined cell signaling roles in young cells. The importance of FUS3 and KSS1 in CLS are largely unknown and analyzed here for the first time. Using both qualitative and quantitative CLS assays, we show that deletion of any of the three MAPK's increases yeast lifespan. Furthermore, combined deletion of any MAPK and TOR1, most prominently fus3Δ/tor1Δ, produces a two-stage CLS response ending in lifespan increase greater than that of tor1Δ. Similar effects are achieved upon endogenous expression of a non-activatable form of Fus3. We speculate that the autophagy-promoting role of FUS3, which is inherently antagonistic to the role of TOR1, may in part be responsible for the differential aging phenotype of fus3Δ/tor1Δ. Consistent with this notion we show that nitrogen starvation, which promotes autophagy by deactivating Tor1, results in decreased CLS if FUS3 is deleted. Taken together, these results reveal a previously unrealized effect of mating-specific MAPKs in the chronological lifespan of yeast.


Assuntos
Longevidade/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Redes Reguladoras de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...