Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Fungi (Basel) ; 9(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37367589

RESUMO

Pathogenic fungi are influenced by many biotic and abiotic factors. Among them, light is a source of information for fungi and also a stress factor that triggers multiple biological responses, including the activation of secondary metabolites, such as the production of melanin pigments. In this study, we analyzed the melanin-like production in in vitro conditions, as well as the expression of all biosynthetic and regulatory genes of the DHN-melanin pathway in the three main Monilinia species upon exposure to light conditions (white, black, blue, red, and far-red wavelengths). On the other hand, we analyzed, for the first time, the metabolism related to ROS in M. fructicola, through the production of hydrogen peroxide (H2O2) and the expression of stress-related genes under different light conditions. In general, the results indicated a clear importance of black light on melanin production and expression in M. laxa and M. fructicola, but not in M. fructigena. Regarding ROS-related metabolism in M. fructicola, blue light highlighted by inhibiting the expression of many antioxidant genes. Overall, it represents a global description of the effect of light on the regulation of two important secondary mechanisms, essential for the adaptation of the fungus to the environment and its survival.

2.
J Fungi (Basel) ; 9(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36836253

RESUMO

Monilinia is the causal agent of brown rot in stone fruit. The three main species that cause this disease are Monilinia laxa, M. fructicola, and M. fructigena, and their infection capacity is influenced by environmental factors (i.e., light, temperature, and humidity). To tolerate stressful environmental conditions, fungi can produce secondary metabolites. Particularly, melanin-like pigments can contribute to survival in unfavorable conditions. In many fungi, this pigment is due to the accumulation of 1,8-dihydroxynaphthalene melanin (DHN). In this study, we have identified for the first time the genes involved in the DHN pathway in the three main Monilinia spp. and we have proved their capacity to synthetize melanin-like pigments, both in synthetic medium and in nectarines at three stages of brown rot development. The expression of all the biosynthetic and regulatory genes of the DHN-melanin pathway has also been determined under both in vitro and in vivo conditions. Finally, we have analyzed the role of three genes involved in fungi survival and detoxification, and we have proved that there exists a close relationship between the synthesis of these pigments and the activation of the SSP1 gene. Overall, these results deeply describe the importance of DHN-melanin in the three main species of Monilinia: M. laxa, M. fructicola, and M. fructigena.

3.
Plant Sci ; 327: 111558, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36493930

RESUMO

The most devastating fungal disease of peaches and nectarines is brown rot, caused by Monilinia spp. Among the many plant responses against biotic stress, plant terpenoids play essential protective functions, including antioxidant activities and inhibition of pathogen growth. Herein, we aimed to characterize the expression of terpenoid biosynthetic genes in fruit tissues that presented different susceptibility to brown rot. For that, we performed artificial inoculations with Monilinia laxa at two developmental stages (immature and mature fruit) of two nectarine cultivars ('Venus' -mid-early season cultivar - and 'Albared' -late season cultivar-) and in vitro tests of the key compounds observed in the transcriptional results. All fruit were susceptible to M. laxa except for immature 'Venus' nectarines. In response to the pathogen, the mevalonic acid (MVA) pathway of the 'Venus' cultivar was highly induced in both stages rather than the methylerythritol phosphate (MEP) pathway, being the expression of some MEP-related biosynthetic genes [e.g., PROTEIN FARNESYLTRANSFERASE (PpPFT), and 3S-LINALOOL SYNTHASE (PpLIS)] different between stages. In 'Albared', both stages presented similar responses to M. laxa for both pathways. Comparisons between cultivars showed that HYDROXYMETHYLGLUTARYL-CoA REDUCTASE (PpHMGR1) expression levels were common in susceptible tissues. Within all the terpenoid biosynthetic pathway, linalool- and farnesal-related pathways stood out for being upregulated only in resistant tissues, which suggest their role in mediating the resistance to M. laxa. The in vitro antifungal activity of linalool and farnesol (precursor of farnesal) revealed fungicidal and fungistatic activities against M. laxa, respectively, depending on the concentration tested. Understanding the different responses between resistant and susceptible tissues could be further considered for breeding or developing new strategies to control brown rot in stone fruit.


Assuntos
Farneseno Álcool , Frutas , Frutas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Técnicas In Vitro
4.
J Clin Med ; 11(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35956123

RESUMO

The aim of this study is to investigate hospital readmissions during 1 year after acute poisoning cases (APC), analyze the temporal behavior of early readmissions (ER) (in the month after the index episode) and predict possible ER. A descriptive analysis of the patients with APC assisted between 2011 and 2016 in the Emergency Department of Hospital La Paz is presented, and various methods of inferential statistics were applied and confirmed by Bayesian analysis in order to evaluate factors associated with total and early readmissions. Out of the 4693 cases of APC included, 968 (20.6%) presented, at least one readmission and 476 (10.1%) of them were ER. The mean age of APC with readmission was 41 years (12.7 SD), 78.9% had previous psychiatric pathology and 44.7% had a clinical history of alcohol addiction. Accidental poisoning has been a protective factor for readmission (OR 0.50; 0.26-0.96). Type of toxin ("drug of abuse" OR 8.88; 1.17-67.25), history of addiction (OR 1.93; 1.18-3.10) and psychiatric history (OR 3.30; 2.53-4.30) are risk factors for readmissions during the first year. Women showed three or more readmissions in a year. The results of the study allow for identification of the predictors for the different numbers of readmissions in the year after the index APC, as well as for ERs.

5.
Int J Food Microbiol ; 373: 109700, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35580409

RESUMO

The development of brown rot in stone fruit caused by the necrotrophic fungus Monilinia spp. is influenced by many abiotic factors, such as temperature, humidity, and light. Specifically, filamentous fungi perceive light as a signal for ecophysiological and adaptive responses. We have explored how specific light wavelengths affect the in vitro development, the regulation of putative development genes and the virulence of the main species of Monilinia (M. laxa, M. fructicola and M. fructigena). After subjecting Monilinia spp. to different light wavelengths (white, black, blue, red, far-red) for 7 days, several differences in their phenotype were observed among light conditions, but also among species. These species of Monilinia exhibited a different phenotypic plasticity in response to light regarding pigmentation, growth, and specially conidiation of colonies. In this sense, we observed that the conidial production was higher in M. laxa than M. fructicola, while M. fructigena showed an inability to produce conidia under the tested conditions. Growth rate among species was significantly lower in M. fructicola under red light wavelength while among light conditions it was increased under far-red light wavelength for M. laxa and under black light for M. fructicola; in contrast, no statistical differences were observed for M. fructigena. Gene expression analysis of 13 genes involved in fungal development of Monilinia spp. revealed a significant difference among the three species of Monilinia, and especially depended on light wavelengths. Among them, a high expression of OPT1, RGS2, RGS3 and SPP1 genes was observed in M. laxa, and LTF1 and STE12 in M. fructicola under black light. In contrast, a high expression of REG1 and C6TF1 genes occurred in both M. fructicola and M. laxa subject to red and far-red light wavelength, respectively. When nectarines were artificially infected with M. laxa and M. fructicola subjected to black light, the virulence was clearly reduced, but not in M. fructigena. Overall, results presented herein demonstrate that light wavelengths are a key abiotic factor for the biology of Monilinia spp., specially modulating its capacity to form conidia, and thus, influencing its spreading and the onset of the disease on nectarines during postharvest.


Assuntos
Ascomicetos , Frutas , Adaptação Fisiológica , Frutas/microbiologia , Esporos Fúngicos , Virulência/genética
6.
Plant Physiol Biochem ; 171: 38-48, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34971954

RESUMO

ROS are known as toxic by-products but also as important signaling molecules playing a key role in fruit development and ripening. To counteract the negative effects of ROS, plants and fruit own multiple ROS-scavenging mechanisms aiming to ensure a balanced ROS homeostasis. In the present study, changes in specific ROS (i.e. H2O2) as well as enzymatic (SOD, CAT, POX, APX) and non-enzymatic (phenylpropanoids, carotenoids and ascorbate) ROS-scavenging systems were investigated along four different stages of nectarine (cv. 'Diamond Ray') fruit development and ripening (39, 70, 94 and 121 DAFB) both at the metabolic (28 individual metabolites or enzymes) and transcriptional level (24 genes). Overall, our results demonstrate a complex ROS-related transcriptome and metabolome reprogramming during fruit development and ripening. At earlier fruit developmental stages an increase on the respiration rate is likely triggering an oxidative burst and resulting in the activation of specific ethylene response factors (ERF1). In turn, ROS-responsive genes or the biosynthesis of specific antioxidant compounds (i.e. phenylpropanoids) were highly expressed or accumulated at earlier fruit developmental stages (39-70 DAFB). Nonetheless, as the fruit develops, the decrease in the fruit respiration rate and the reduction of ERF1 genes leads to lower levels of most non-enzymatic antioxidants and higher accumulation of H2O2. Based on available literature and the observed accumulation dynamics of H2O2, it is anticipated that this compound may not only be a by-product of ROS-scavenging but also a signaling molecule accumulated during the ripening of nectarine fruit.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Carotenoides , Etilenos , Frutas/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Nurs Rep ; 13(1): 1-16, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36648975

RESUMO

In the last few decades, the impact of chronic health conditions on health systems, as well as on the quality of life, frailty, and dependence of those affected, has been brought to light. The objective of this study was to describe the population care needs of highly complex chronic patients (HCCPs). METHODS: An epidemiological observational study was conducted. RESULTS: A total of 13,262 patients were identified, 51% of which were elderly women. Among all patients, 84.4% had received a nursing assessment related to health patterns. Three diagnoses were established in 25% of the sample: readiness for enhanced health management, impaired skin integrity, and risk for falls. There were significant differences according to age, most importantly in terms of impaired skin integrity (39% of patients under 80 years old). Risk for falls, social isolation, situational low self-esteem, chronic low self-esteem, impaired home maintenance, anxiety, ineffective health management, ineffective coping, impaired memory, insomnia, and self-care deficits were more common in those living alone. A total of 37 diagnoses featured differences according to frailty/dependence. Approximately 23% of HCCPs suffered from frail elderly syndrome. CONCLUSIONS: This study presents the most common care needs of HCCPs, describing the sociodemographic profile of this part of the population. The planning of HCCP care varies in nature. Factors such as the dependence level and frailty of these people should be taken into consideration.

8.
Biotechnol Rep (Amst) ; 32: e00675, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34603978

RESUMO

In this study, three wastes based on potato peels and pulps, tomato seeds and wheat bran were used as basis for the preparation of a cheap medium to produce the bacterium P. oryzihabitans PGP01. In flasks experiments, P. oryzihabitans PGP01 growth at 25 °C in a medium based on frozen potato peels and pulp (FPP) with tryptone as a nitrogen source resulted in the maximum production compared to the commercial TSB medium. In the scale-up to 2 L bioreactors, FPP supplemented with tryptone, molasses, NaCl and K2HPO4 allowed to reach similar biomass production than in the TSB medium. A maximum growth of 4.4 × 109 CFU mL-1 after setting the agitation and the air flux conditions at 400 rpm and 0.75 vvm. Finally, P. oryzihabitans PGP01 growing in this optimized medium conserved its biological activity showing the expected effect in root development previously reported for this microorganism.

9.
Front Plant Sci ; 12: 666985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567018

RESUMO

The development of brown rot caused by the necrotrophic fungi Monilinia spp. in stone fruit under field and postharvest conditions depends, among others, on environmental factors. The effect of temperature and humidity are well studied but there is little information on the role of light in disease development. Herein, we studied the effect of two lighting treatments and a control condition (darkness) on: (i) several growth parameters of two Monilinia spp. (M. laxa and M. fructicola) grown in vitro and (ii) the light effect in their capacity to rot the fruit (nectarines) when exposed to the different lighting treatments. We also assessed the effect of such abiotic factors in the development of the disease on inoculated nectarines during postharvest storage. Evaluations also included testing the effect of fruit bagging on disease development as well as on ethylene production. Under in vitro conditions, lighting treatments altered colony morphology and conidiation of M. laxa but this effect was less acute in M. fructicola. Such light-induced changes under in vitro development also altered the capacity of M. laxa and M. fructicola to infect nectarines, with M. laxa becoming less virulent. The performance of Monilinia spp. exposed to treatments was also determined in vivo by inoculating four bagged or unbagged nectarine cultivars, indicating an impaired disease progression. Incidence and lesion diameter of fruit exposed to the different lighting treatments during postharvest showed that the effect of the light was intrinsic to the nectarine cultivar but also Monilinia spp. dependent. While lighting treatments reduced M. laxa incidence, they enhanced M. fructicola development. Preharvest conditions such as fruit bagging also impaired the ethylene production of inoculated fruit, which was mainly altered by M. laxa and M. fructicola, while the bag and light effects were meaningless. Thus, we provide several indications of how lighting treatments significantly alter Monilinia spp. behavior both in vitro and during the interaction with stone fruit. This study highlights the importance of modulating the lighting environment as a potential strategy to minimize brown rot development on stone fruit and to extent the shelf-life period of fruit in postharvest, market, and consumer's house.

10.
J Fungi (Basel) ; 7(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201288

RESUMO

Brown rot, caused by Monilinia spp., is among the most important diseases in stone fruits, and some pome fruits (mainly apples). This disease is responsible for significant yield losses, particularly in stone fruits, when weather conditions favorable for disease development appear. To achieve future sustainable strategies to control brown rot on fruit, one potential approach will be to characterize genomic variation among Monilinia spp. to define, among others, the capacity to infect fruit in this genus. In the present work, we performed genomic and phylogenomic comparisons of five Monilinia species and inferred differences in numbers of secreted proteins, including CAZy proteins and other proteins important for virulence. Duplications specific to Monilinia were sparse and, overall, more genes have been lost than gained. Among Monilinia spp., low variability in the CAZome was observed. Interestingly, we identified several secondary metabolism clusters based on similarity to known clusters, and among them was a cluster with homology to pyriculol that could be responsible for the synthesis of chloromonilicin. Furthermore, we compared sequences of all strains available from NCBI of these species to assess their MAT loci and heterokaryon compatibility systems. Our comparative analyses provide the basis for future studies into understanding how these genomic differences underlie common or differential abilities to interact with the host plant.

11.
Plant Sci ; 308: 110925, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34034873

RESUMO

Epigenetic regulation is crucial to ensure a coordinated control of the different events that occur during fruit development and ripening. Sirtuins are NAD+-dependent histone deacetylases involved in the regulation of gene expression of many biological processes. However, their implications in the Rosaceae family remains unexplored. Accordingly, in this work, we demonstrated the phylogenetic divergence of both sirtuins among Rosaceae species. We then characterized the expression pattern of both SRT1 and SRT2 in selected pome and stone fruit species. Both SRT1 and SRT2 significantly changed during the fruit development and ripening of apple, nectarine and pear fruit, displaying a different expression profile. Such differences could explain in part their different ripening behaviour. To further unravel the role of sirtuins on the fruit development and ripening processes, a deeper analysis was performed using pear as a fruit model. In pear, PbSRT1 gene expression levels were negatively correlated with specific hormones (i.e. abscisic acid, indole-3-acetic acid, gibberellin A1 and zeatin) during the first phases of fruit development. PbSRT2 seemed to directly mediate pear ripening in an ethylene-independent manner. This hypothesis was further reinforced by treating the fruit with the ethylene inhibitor 1-methylcyclopropene (1-MCP). Instead, enhanced PbSRT2 along pear growth/ripening positively correlated with the accumulation of major sugars (R2 > 0.94), reinforcing the idea that sugar metabolism may be a target of epigenetic modifications during fruit ripening. Overall, the results from this study point out, for the first time, the importance that sirtuins have in the regulation of fruit growth and ripening of pear fruit by likely regulating hormonal and sugar metabolism.


Assuntos
Frutas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Pyrus/crescimento & desenvolvimento , Pyrus/genética , Sirtuínas/genética , Epigênese Genética , Frutas/genética , Malus/genética , Malus/crescimento & desenvolvimento , Filogenia , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus persica/genética , Prunus persica/crescimento & desenvolvimento , Sirtuínas/metabolismo , Especificidade da Espécie
12.
Rev. neuro-psiquiatr. (Impr.) ; 84(2): 128-131, abr.-jun. 2021. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1341578

RESUMO

RESUMEN El síndrome cistocerebral fue descrito por primera vez en 1990 por Blackburn y Dunn. Los casos estudiados fueron varones ancianos con síndrome confusional agudo y retención urinaria aguda que, tras un drenaje vesical, presentaron resolución completa del cuadro clínico. Se reporta el caso de un anciano con disminución rápida del nivel de consciencia, mioclonías, hipotensión arterial, bradicardia y retención aguda de orina que experimentó total remisión del cuadro clínico luego del drenaje vesical correspondiente. Se describen, asimismo, los posibles mecanismos implicados en el origen de este síndrome y las alteraciones hemodinámicas y autonómicas subyacentes. Se sugiere considerar al síndrome cistocerebral en el diagnóstico diferencial de pacientes varones ancianos con síndrome confusional o deterioro cognitivo e hipertrofia prostática y que presenten, además, un episodio de retención urinaria aguda.


SUMMARY Cystocerebral syndrome was first described in 1990 by Blackburn and Dunn, in elderly males with acute confusion syndrome and urinary retention, who after bladder drainage experienced full resolution of the clinical picture. We report the case of an elderly male patient with Cystocerebral syndrome and symptoms such as a rapid decrease in consciousness level, myoclonies, hypotension, bradycardia and acute urinary retention who, after bladder drainage presented a complete remission of the clinical picture. The potential mechanisms involved in the origin of this syndrome are described, as well as its underlying hemodynamic and autonomic alterations. Cystocerebral syndrome should be considered in the differential diagnosis of patients with a confusional syndrome and cognitive impairment, diagnosed with prostatic hypertrophy and presenting, in addition, an episode of acute urinary retention.

13.
Planta ; 253(4): 78, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33715081

RESUMO

MAIN CONCLUSION: The in vitro application of rhizosphere microorganisms led to a higher rooting percentage in Pyrus Py12 rootstocks and increased plant growth of Pyrus Py170 and Prunus RP-20. The rooting of fruit tree rootstocks is the most challenging step of the in vitro propagation process. The use of rhizosphere microorganisms to promote in vitro rooting and plant growth as an alternative to the addition of chemical hormones to culture media is proposed in the present study. Explants from two Pyrus (Py170 and Py12) rootstocks and the Prunus RP-20 rootstock were inoculated with Pseudomonas oryzihabitans PGP01, Cladosporium ramotenellum PGP02 and Phoma sp. PGP03 following two different methods to determine their effects on in vitro rooting and plantlet growth. The effects of the microorganisms on the growth of fully developed Py170 and RP-20 plantlets were also studied in vitro. All experiments were conducted using vermiculite to simulate a soil system in vitro. When applied to Py12 shoots, which is a hard-to-root plant material, both C. ramotenellum PGP02 and Phoma sp. PGP03 fungi were able to increase the rooting percentage from 56.25% to 100% following auxin indole-3-butyric acid (IBA) treatment. Thus, the presence of these microorganisms clearly improved root development, inducing a higher number of roots and causing shorter roots. Better overall growth and improved stem growth of treated plants was observed when auxin treatment was replaced by co-culture with microorganisms. A root growth-promoting effect was observed on RP-20 plantlets after inoculation with C. ramotenellum PGP02, while P. oryzihabitans PGP01 increased root numbers for both Py170 and RP-20 and increased root growth over stem growth for RP-20. It was also shown that the three microorganisms P. oryzihabitans PGP01, C. ramotenellum PGP02 and Phoma sp. PGP03 were able to naturally produce auxin, including indole-3-acetic acid (IAA), at different levels. Overall, our results demonstrate that the microorganisms P. oryzihabitans PGP01 and C. ramotenellum PGP02 had beneficial effects on in vitro rooting and plantlet growth and could be applied to in vitro tissue culture as a substitute for IBA.


Assuntos
Cladosporium/fisiologia , Raízes de Plantas/fisiologia , Prunus/fisiologia , Pseudomonas/fisiologia , Pyrus/fisiologia , Phoma/fisiologia , Raízes de Plantas/microbiologia , Prunus/microbiologia , Pyrus/microbiologia , Rizosfera , Microbiologia do Solo
14.
Environ Microbiol ; 23(10): 6038-6055, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33734550

RESUMO

We present the first worldwide study on the apple (Malus × domestica) fruit microbiome that examines questions regarding the composition and the assembly of microbial communities on and in apple fruit. Results revealed that the composition and structure of the fungal and bacterial communities associated with apple fruit vary and are highly dependent on geographical location. The study also confirmed that the spatial variation in the fungal and bacterial composition of different fruit tissues exists at a global level. Fungal diversity varied significantly in fruit harvested in different geographical locations and suggests a potential link between location and the type and rate of postharvest diseases that develop in each country. The global core microbiome of apple fruit was represented by several beneficial microbial taxa and accounted for a large fraction of the fruit microbial community. The study provides foundational information about the apple fruit microbiome that can be utilized for the development of novel approaches for the management of fruit quality and safety, as well as for reducing losses due to the establishment and proliferation of postharvest pathogens. It also lays the groundwork for studying the complex microbial interactions that occur on apple fruit surfaces.


Assuntos
Malus , Microbiota , Bactérias/genética , Frutas/microbiologia , Fungos/genética , Malus/microbiologia
15.
Pest Manag Sci ; 77(5): 2502-2511, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33442935

RESUMO

BACKGROUND: Brown rot caused by Monilinia spp. is the most significant disease of stone fruit. New approaches to fruit production have necessitated the development of control strategies that are more eco- and consumer-friendly. An efficient field strategy to control brown rot was previously designed based on the application of two biocontrol agents (BCAs), Bacillus amyloliquefaciens CPA-8 (CPA-8) or Penicillium frequentans 909 (Pf909), with calendar-based treatment. In the present study, the strategy was validated on different stone fruit hosts in four producing countries over two seasons. RESULTS: The results obtained were reported according to three different scenarios: Scenario 1, in which there was no presence of disease in the field; Scenario 2, in which high disease pressure occurred in the field and treatments (biologicals or chemicals) were not effective; and Scenario 3, with low or medium to high disease presence. The results were successful because, in general, BCA strategies were shown to control brown rot to a similar extent as chemicals strategies. We found that most of the trials conducted in this study were classed under Scenario 3 (62.5%), with only 12.5% and 25% of the trials classed under Scenarios 1 and 2, respectively. CONCLUSION: These novel findings allowed the formulation of CPA-8 and Pf909 as valuable tools for farmers to produce stone fruits more competitively and meet consumer demand for safer and more environmentally friendly products. © 2021 Society of Chemical Industry.


Assuntos
Ascomicetos , Penicillium , Europa (Continente) , Frutas
16.
Food Sci Technol Int ; 27(4): 366-379, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32960656

RESUMO

In the present work, the major physiological and compositional changes occurring during 'Merrill O'Henry' peach growth and its relationship with susceptibility to three strains of Monilinia spp. at 49, 77, 126 and 160 days after full bloom were explored. Results of disease incidence indicated wide differences among phenological stages, being 49 and 126 days after full bloom the moment when peaches showed significantly lower susceptibility to brown rot (40 and 23% of rotten fruit, respectively, for strain ML8L). Variation in brown rot susceptibility among different growth stages was also strain-dependent. Lower fruit susceptibility to ML8L at 49 and 126 was accompanied by noticeable changes in the fruit ethylene and respiration patterns, and also in sugars and organic acids content. By employing a partial least squares regression model, a strong negative relationship between citric acid, and a positive association of ethylene with peach susceptibility to Monilinia spp. at diverse phenological stages were observed. The results obtained herein highlight that the content of certain compounds such as citrate, malate and sucrose; the respiratory activity and the fruit ethylene production may mediate in a coordinated manner the fruit resistance to Monilinia spp. at different phenological stages of peach fruit.


Assuntos
Ascomicetos , Prunus persica , Frutas , Doenças das Plantas , Prunus persica/microbiologia
17.
Hortic Res ; 7: 167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082973

RESUMO

Infections by the fungus Monilinia laxa, the main cause of brown rot in Europe, result in considerable losses of stone fruit. Herein, we present a comprehensive transcriptomic approach to unravel strategies deployed by nectarine fruit and M. laxa during their interaction. We used M. laxa-inoculated immature and mature fruit, which was resistant and susceptible to brown rot, respectively, to perform a dual RNA-Seq analysis. In immature fruit, host responses, pathogen biomass, and pathogen transcriptional activity peaked at 14-24 h post inoculation (hpi), at which point M. laxa appeared to switch its transcriptional response to either quiescence or death. Mature fruit experienced an exponential increase in host and pathogen activity beginning at 6 hpi. Functional analyses in both host and pathogen highlighted differences in stage-dependent strategies. For example, in immature fruit, M. laxa unsuccessfully employed carbohydrate-active enzymes (CAZymes) for penetration, which the fruit was able to combat with tightly regulated hormone responses and an oxidative burst that challenged the pathogen's survival at later time points. In contrast, in mature fruit, M. laxa was more dependent on proteolytic effectors than CAZymes, and was able to invest in filamentous growth early during the interaction. Hormone analyses of mature fruit infected with M. laxa indicated that, while jasmonic acid activity was likely useful for defense, high ethylene activity may have promoted susceptibility through the induction of ripening processes. Lastly, we identified M. laxa genes that were highly induced in both quiescent and active infections and may serve as targets for control of brown rot.

18.
Plant Sci ; 299: 110599, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32900437

RESUMO

Monilinia spp. may infect stone fruit at any growth stage, although susceptibility to brown rot depends on both host properties and climatological conditions. This said, no studies deciphering the host response in the interaction between peach blossoms and Monilinia spp. are yet available. This study presents an in-depth characterization of the role of ethylene in the interaction of 'Merrill O'Henry' peach petals (Prunus persica (L.) Batch) with Monilinia laxa and M. fructicola. We investigated the physiological responses of the host and the fungi to the application of ethylene and 1-methylcyclopropene (1-MCP) as well as the molecular patterns associated with the biosynthetic and ethylene-dependent responses during the interaction of both Monilinia species with the host. The incidence of both species was differentially affected by 1-MCP and ethylene; M. laxa was favoured by the enhanced host ethylene production associated with the treatments whereas M. fructicola reduced its infection capacity. Such differences were host-dependent as treatments did not affect growth or colony morphology of Monilinia spp. Besides, host ethylene production was altered in M. laxa inoculated petals, either by the fungus or the host itself. Molecular analysis revealed some important ERFs that could be involved in the different ability of both species to activate a cascade response of peach petals against these pathogens.


Assuntos
Ascomicetos/fisiologia , Ciclopropanos/administração & dosagem , Etilenos/biossíntese , Reguladores de Crescimento de Plantas/metabolismo , Prunus persica/fisiologia , Etilenos/administração & dosagem , Flores/microbiologia , Flores/fisiologia , Prunus persica/microbiologia
19.
Genes (Basel) ; 10(12)2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835779

RESUMO

To compare in vivo the infection process of Monilinia fructicola on nectarines and apples using confocal microscopy it is necessary to transform a pathogenic strain with a construct expressing a fluorescent chromophore such as GFP. Thus, germinated conidia of the pathogen were transformed with Agrobacterium tumefaciens carrying the plasmid pPK2-hphgfp that allowed the expression of a fluorescent Hph-GFP chimera. The transformants were selected according to their resistance to hygromycin B, provided by the constitutive expression of the hph-gfp gene driven by the glyceraldehyde 3P dehydrogenase promoter of Aspergillus nidulans. The presence of T-DNA construct in the genomic DNA was confirmed by PCR using a range of specific primers. Subsequent PCR-mediated analyses proved integration of the transgene at a different genomic location in each transformant and the existence of structural reorganizations at these insertion points. The expression of Hph-GFP in three independent M. fructicola transformants was monitored by immunodetection and epifluorescence and confocal microscopy. The Atd9-M. fructicola transformant displayed no morphological defects and showed growth and pathogenic characteristics similar to the wild type. Microscopy analysis of the Atd9 transformant evidenced that nectarine infection by M. fructicola was at least three times faster than on apples.


Assuntos
Ascomicetos/patogenicidade , Frutas/microbiologia , Doenças das Plantas/microbiologia , Agrobacterium tumefaciens/genética , Ascomicetos/genética , Primers do DNA , Frutas/genética , Proteínas de Fluorescência Verde , Interações Hospedeiro-Patógeno/fisiologia , Higromicina B , Malus/genética , Malus/microbiologia , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Engenharia de Proteínas/métodos , Prunus/genética , Prunus/microbiologia , Prunus persica/genética , Prunus persica/microbiologia , Proteínas Recombinantes/genética , Esporos Fúngicos/crescimento & desenvolvimento
20.
Plant Physiol Biochem ; 144: 324-333, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31606717

RESUMO

Controversy exists on whether ethylene is involved in determining fruit resistance or susceptibility against biotic stress. In this work, the hypothesis that ethylene biosynthesis in peaches at different phenological stages may be modulated by Monilinia spp. was tested. To achieve this, at 49 and 126 d after full bloom (DAFB), ethylene biosynthesis of healthy and infected 'Merryl O'Henry' peaches with three strains of Monilinia spp. (M. fructicola (CPMC6) and M. laxa (CPML11 and ML8L) that differ in terms of aggressiveness) was analysed at the biochemical and molecular level along the course of infection in fruit stored at 20 °C. At 49 DAFB, results evidenced that infected fruit showed inhibition of ethylene production in comparison with non-inoculated fruit, suggesting that the three Monilinia strains were somehow suppressing ethylene biosynthesis to modify fruit defences to successfully infect the host. On the contrary, at 126 DAFB ethylene production increased concomitantly with brown rot spread, and values for non-inoculated fruit were almost undetectable throughout storage at 20 °C. The expression of several target genes involved in the ethylene biosynthetic pathway confirmed that they were differentially expressed upon Monilinia infection, pointing to a strain-dependent regulation. Notably, Prunus persica 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) (PpACS) family was the most over-expressed over time, demonstrating a positive ethylene regulation, especially at 126 DAFB. At this phenological stage it was demonstrated the ability of Monilinia spp. to alter ethylene biosynthesis through PpACS1 and benefit from the consequences of an ethylene burst likely on cell wall softening. Overall, our results put forward that infection not only among different strains but also at each stage is achieved by different mechanisms, with ethylene being a key factor in determining peach resistance or susceptibility to brown rot.


Assuntos
Ascomicetos/patogenicidade , Etilenos/metabolismo , Doenças das Plantas/microbiologia , Prunus persica/metabolismo , Prunus persica/microbiologia , Aminoácido Oxirredutases/metabolismo , Interações Hospedeiro-Patógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...