Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 26(3): 416-429, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635496

RESUMO

Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD), suggesting that activation of this innate immune receptor may be a useful therapeutic strategy. Here we describe a high-affinity human TREM2-activating antibody engineered with a monovalent transferrin receptor (TfR) binding site, termed antibody transport vehicle (ATV), to facilitate blood-brain barrier transcytosis. Upon peripheral delivery in mice, ATV:TREM2 showed improved brain biodistribution and enhanced signaling compared to a standard anti-TREM2 antibody. In human induced pluripotent stem cell (iPSC)-derived microglia, ATV:TREM2 induced proliferation and improved mitochondrial metabolism. Single-cell RNA sequencing and morphometry revealed that ATV:TREM2 shifted microglia to metabolically responsive states, which were distinct from those induced by amyloid pathology. In an AD mouse model, ATV:TREM2 boosted brain microglial activity and glucose metabolism. Thus, ATV:TREM2 represents a promising approach to improve microglial function and treat brain hypometabolism found in patients with AD.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Microglia , Barreira Hematoencefálica , Distribuição Tecidual , Anticorpos , Encéfalo , Modelos Animais de Doenças , Glicoproteínas de Membrana , Receptores Imunológicos/genética
2.
Methods Mol Biol ; 2616: 251-260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715940

RESUMO

Studying interactions between neural cells and glial cells in vitro remains an essential tool for scientists worldwide, and with the addition of oxygen-glucose deprivation (OGD) can be particularly useful for identifying mechanisms related to ischemic stroke-related injury and repair. In developing these protocols in the lab, however, we discovered the limitation of co-culturing immune cells with pure neuronal cultures as the standard media for immune cells impair neuronal growth and vice versa. Thus, we optimized a mixed cortical cell culture system that does not require the use of glial-conditioned media to support the viability and growth of neurons but can nonetheless be used to quantify neuronal survival and dendritic arborization. The following methods provide a guide as to how to culture mixed cortical cells from mouse pups (postnatal day 0-2). Additionally, we demonstrate how to co-culture mixed cortical cells with immune cells (e.g., B cells) to study neuro-immune interactions in vitro.


Assuntos
Oxigênio , Acidente Vascular Cerebral , Camundongos , Animais , Técnicas de Cocultura , Glucose , Células Cultivadas , Sobrevivência Celular , Córtex Cerebral
3.
Ann Clin Transl Neurol ; 10(2): 276-291, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36579400

RESUMO

OBJECTIVE: Despite successful endovascular therapy, a proportion of stroke patients exhibit long-term functional decline, regardless of the cortical reperfusion. Our objective was to evaluate the early activation of the adaptive immune response and its impact on neurological recovery in patients with large vessel occlusion (LVO). METHODS: Nineteen (13 females, 6 males) patients with acute LVO were enrolled in a single-arm prospective cohort study. During endovascular therapy (EVT), blood samples were collected from pre and post-occlusion, distal femoral artery, and median cubital vein (controls). Cytokines, chemokines, cellular and functional profiles were evaluated with immediate and follow-up clinical and radiographic parameters, including cognitive performance and functional recovery. RESULTS: In the hyperacute phase (within hours), adaptive immune activation was observed in the post-occlusion intra-arterial environment (post). Ischemic vascular tissue had a significant increase in T-cell-related cytokines, including IFN-γ and MMP-9, while GM-CSF, IL-17, TNF-α, IL-6, MIP-1a, and MIP-1b were decreased. Cellularity analysis revealed an increase in inflammatory IL-17+ and GM-CSF+ helper T-cells, while natural killer (NK), monocytes and B-cells were decreased. A correlation was observed between hypoperfused tissue, infarct volume, inflammatory helper, and cytotoxic T-cells. Moreover, helper and cytotoxic T-cells were also significantly increased in patients with improved motor function at 3 months. INTERPRETATION: We provide evidence of the activation of the inflammatory adaptive immune response during the hyperacute phase and the association of pro-inflammatory cytokines with greater ischemic tissue and worsening recovery after successful reperfusion. Further characterization of these immune pathways is warranted to test selective immunomodulators during the early stages of stroke rehabilitation.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Transtornos das Habilidades Motoras , Feminino , Humanos , Masculino , Citocinas , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Imunidade , Interleucina-17 , Estudos Prospectivos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/terapia , Isquemia Encefálica/complicações , Isquemia Encefálica/imunologia , Isquemia Encefálica/terapia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/imunologia , Transtornos das Habilidades Motoras/etiologia , Transtornos das Habilidades Motoras/imunologia , Doenças Neuroinflamatórias/imunologia
4.
Proc Natl Acad Sci U S A ; 117(9): 4983-4993, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32051245

RESUMO

Lymphocytes infiltrate the stroke core and penumbra and often exacerbate cellular injury. B cells, however, are lymphocytes that do not contribute to acute pathology but can support recovery. B cell adoptive transfer to mice reduced infarct volumes 3 and 7 d after transient middle cerebral artery occlusion (tMCAo), independent of changing immune populations in recipient mice. Testing a direct neurotrophic effect, B cells cocultured with mixed cortical cells protected neurons and maintained dendritic arborization after oxygen-glucose deprivation. Whole-brain volumetric serial two-photon tomography (STPT) and a custom-developed image analysis pipeline visualized and quantified poststroke B cell diapedesis throughout the brain, including remote areas supporting functional recovery. Stroke induced significant bilateral B cell diapedesis into remote brain regions regulating motor and cognitive functions and neurogenesis (e.g., dentate gyrus, hypothalamus, olfactory areas, cerebellum) in the whole-brain datasets. To confirm a mechanistic role for B cells in functional recovery, rituximab was given to human CD20+ (hCD20+) transgenic mice to continuously deplete hCD20+-expressing B cells following tMCAo. These mice experienced delayed motor recovery, impaired spatial memory, and increased anxiety through 8 wk poststroke compared to wild type (WT) littermates also receiving rituximab. B cell depletion reduced stroke-induced hippocampal neurogenesis and cell survival. Thus, B cell diapedesis occurred in areas remote to the infarct that mediated motor and cognitive recovery. Understanding the role of B cells in neuronal health and disease-based plasticity is critical for developing effective immune-based therapies for protection against diseases that involve recruitment of peripheral immune cells into the injured brain.


Assuntos
Encéfalo/metabolismo , Movimento Celular/fisiologia , Neurogênese/fisiologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/metabolismo , Imunidade Adaptativa , Animais , Linfócitos B/metabolismo , Encéfalo/patologia , Cognição , Giro Denteado/metabolismo , Modelos Animais de Doenças , Humanos , Infarto da Artéria Cerebral Média , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal , Neurônios/metabolismo
5.
Front Neurosci ; 13: 1055, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636534

RESUMO

Whole-brain volumetric microscopy techniques such as serial two-photon tomography (STPT) can provide detailed information on the roles of neuroinflammation and neuroplasticity throughout the whole brain post-stroke. STPT automatically generates high-resolution images of coronal sections of the entire mouse brain that can be readily visualized in three dimensions. We developed a pipeline for whole brain image analysis that includes supervised machine learning (pixel-wise random forest models via the "ilastik" software package) followed by registration to a standardized 3-D atlas of the adult mouse brain (Common Coordinate Framework v3.0; Allen Institute for Brain Science). These procedures allow the detection of cellular fluorescent signals throughout the brain in an unbiased manner. To illustrate our imaging techniques and automated image quantification, we examined long-term post-stroke motor circuit connectivity in mice that received a motor cortex photothrombotic stroke. Two weeks post-stroke, mice received intramuscular injections of pseudorabies virus (PRV-152), a trans-synaptic retrograde herpes virus driving expression of green fluorescent protein (GFP), into the affected contralesional forelimb to label neurons in descending tracts to the forelimb musculature. Mice were sacrificed 3 weeks post-stroke. We also quantified sub-acute neuroinflammation in the post-stroke brain in a separate cohort of mice following a 60 min transient middle cerebral artery occlusion (tMCAo). Naive e450+-labeled splenic CD8+ cytotoxic T cells were intravenously injected at 7, 24, 48, and 72 h post-tMCAo. Mice were sacrificed 4 days after stroke. Detailed quantification of post-stroke neural connectivity and neuroinflammation indicates a role for remote brain regions in stroke pathology and recovery. The workflow described herein, incorporating STPT and automated quantification of fluorescently labeled features of interest, provides a framework by which one can objectively evaluate labeled neuronal or lymphocyte populations in healthy and injured brains. The results provide region-specific quantification of neural connectivity and neuroinflammation, which could be a critical tool for investigating mechanisms of not only stroke recovery, but also a wide variety of brain injuries or diseases.

6.
Exerc Immunol Rev ; 25: 34-49, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30785868

RESUMO

Individuals with amnestic mild cognitive impairment (aMCI) experience cognitive declines in learning and memory greater than expected for normal aging, and are at a high risk of dementia. We previously reported that sedentary aMCI patients exhibited neuroinflammation that correlated with brain amyloid beta (Aß) burden, as determined by 18F-florbetapir positron emission tomography (PET). These aMCI patients enrolled in a one-year randomized control trial (AETMCI, NCT01146717) to test the beneficial effects of 12 months of moderate-to-high intensity aerobic exercise training (AET) or stretching/toning (ST) control intervention on neurocognitive function. A subset of aMCI participants had PET imaging, cognitive testing, and immunophenotyping of cerebrospinal fluid (CSF) and peripheral blood after AET or ST interventions. As adaptive immune responses were similar between AET and ST groups, we combined AET/ST into a general 'physical activity' (PA) group and compared Aß burden, cognitive function, and adaptive immune cell subsets to sedentary lifestyle before intervention. We found that PAinduced immunomodulation of CD4+ and CD8+ T cells in CSF correlated with changes in Aß burden in brain regions associated with executive function. Furthermore, after PA, cognitive scores on tests of memory, processing speed, attention, verbal fluency, and executive function were associated with increased percent representation of circulating naïve B + T cells. We review the literature on aMCI-related cognition and immune changes as they relate to exercise, and highlight how our preliminary data suggest a complex interplay between the adaptive immune system, physical activity, cognition, and Aß burden in aMCI.


Assuntos
Imunidade Adaptativa , Peptídeos beta-Amiloides/metabolismo , Subpopulações de Linfócitos B/citologia , Disfunção Cognitiva , Exercício Físico , Subpopulações de Linfócitos T/citologia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Crit Care Med ; 47(3): e206-e213, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30640221

RESUMO

OBJECTIVES: Extracorporeal membrane oxygenation provides short-term cardiopulmonary life support, but is associated with peripheral innate inflammation, disruptions in cerebral autoregulation, and acquired brain injury. We tested the hypothesis that extracorporeal membrane oxygenation also induces CNS-directed adaptive immune responses which may exacerbate extracorporeal membrane oxygenation-associated brain injury. DESIGN: A single center prospective observational study. SETTING: Pediatric and cardiac ICUs at a single tertiary care, academic center. PATIENTS: Twenty pediatric extracorporeal membrane oxygenation patients (0-14 yr; 13 females, 7 males) and five nonextracorporeal membrane oxygenation Pediatric Logistic Organ Dysfunction score matched patients INTERVENTIONS:: None. MEASUREMENTS AND MAIN RESULTS: Venous blood samples were collected from the extracorporeal membrane oxygenation circuit at day 1 (10-23 hr), day 3, and day 7 of extracorporeal membrane oxygenation. Flow cytometry quantified circulating innate and adaptive immune cells, and CNS-directed autoreactivity was detected using an in vitro recall response assay. Disruption of cerebral autoregulation was determined using continuous bedside near-infrared spectroscopy and acquired brain injury confirmed by MRI. Extracorporeal membrane oxygenation patients with acquired brain injury (n = 9) presented with a 10-fold increase in interleukin-8 over extracorporeal membrane oxygenation patients without brain injury (p < 0.01). Furthermore, brain injury within extracorporeal membrane oxygenation patients potentiated an inflammatory phenotype in adaptive immune cells and selective autoreactivity to brain peptides in circulating B cell and cytotoxic T cell populations. Correlation analysis revealed a significant relationship between adaptive immune responses of extracorporeal membrane oxygenation patients with acquired brain injury and loss of cerebral autoregulation. CONCLUSIONS: We show that pediatric extracorporeal membrane oxygenation patients with acquired brain injury exhibit an induction of pro-inflammatory cell signaling, a robust activation of adaptive immune cells, and CNS-targeting adaptive immune responses. As these patients experience developmental delays for years after extracorporeal membrane oxygenation, it is critical to identify and characterize adaptive immune cell mechanisms that target the developing CNS.


Assuntos
Imunidade Adaptativa/imunologia , Lesões Encefálicas/terapia , Encéfalo/imunologia , Oxigenação por Membrana Extracorpórea , Adolescente , Linfócitos B/imunologia , Lesões Encefálicas/imunologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Descoberta de Drogas , Oxigenação por Membrana Extracorpórea/efeitos adversos , Feminino , Citometria de Fluxo , Humanos , Lactente , Recém-Nascido , Inflamação/etiologia , Inflamação/imunologia , Masculino , Escores de Disfunção Orgânica , Projetos Piloto , Linfócitos T Citotóxicos/imunologia
8.
Front Cell Neurosci ; 12: 365, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386211

RESUMO

Multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS) is the leading cause of non-traumatic neurological disability in young adults. Immune mediated destruction of myelin and oligodendrocytes is considered the primary pathology of MS, but progressive axonal loss is the major cause of neurological disability. In an effort to understand microglia function during CNS inflammation, our laboratory focuses on the fractalkine/CX3CR1 signaling as a regulator of microglia neurotoxicity in various models of neurodegeneration. Fractalkine (FKN) is a transmembrane chemokine expressed in the CNS by neurons and signals through its unique receptor CX3CR1 present in microglia. During experimental autoimmune encephalomyelitis (EAE), CX3CR1 deficiency confers exacerbated disease defined by severe inflammation and neuronal loss. The CX3CR1 human polymorphism I249/M280 present in ∼20% of the population exhibits reduced adhesion for FKN conferring defective signaling whose role in microglia function and influence on neurons during MS remains unsolved. The aim of this study is to assess the effect of weaker signaling through hCX3CR1I249/M280 during EAE. We hypothesize that dysregulated microglial responses due to impaired CX3CR1 signaling enhance neuronal/axonal damage. We generated an animal model replacing the mouse CX3CR1 locus for the hCX3CR1I249/M280 variant. Upon EAE induction, these mice exhibited exacerbated EAE correlating with severe inflammation and neuronal loss. We also observed that mice with aberrant CX3CR1 signaling are unable to produce FKN and ciliary neurotrophic factor during EAE in contrast to wild type mice. Our results provide validation of defective function of the hCX3CR1I249/M280 variant and the foundation to broaden the understanding of microglia dysfunction during neuroinflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...