Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003628

RESUMO

Despite decades of intense research, disease-modifying therapeutic approaches for Alzheimer's disease (AD) are still very much needed. Apart from the extensively analyzed tau and amyloid pathological cascades, two promising avenues of research that may eventually identify new druggable targets for AD are based on a better understanding of the mechanisms of resilience and vulnerability to this condition. We argue that insulin-like growth factor I (IGF-I) activity in the brain provides a common substrate for the mechanisms of resilience and vulnerability to AD. We postulate that preserved brain IGF-I activity contributes to resilience to AD pathology as this growth factor intervenes in all the major pathological cascades considered to be involved in AD, including metabolic impairment, altered proteostasis, and inflammation, to name the three that are considered to be the most important ones. Conversely, disturbed IGF-I activity is found in many AD risk factors, such as old age, type 2 diabetes, imbalanced diet, sedentary life, sociality, stroke, stress, and low education, whereas the Apolipoprotein (Apo) E4 genotype and traumatic brain injury may also be influenced by brain IGF-I activity. Accordingly, IGF-I activity should be taken into consideration when analyzing these processes, while its preservation will predictably help prevent the progress of AD pathology. Thus, we need to define IGF-I activity in all these conditions and develop a means to preserve it. However, defining brain IGF-I activity cannot be solely based on humoral or tissue levels of this neurotrophic factor, and new functionally based assessments need to be developed.


Assuntos
Doença de Alzheimer , Fator de Crescimento Insulin-Like I , Humanos , Doença de Alzheimer/metabolismo , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Animais
3.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37463753

RESUMO

Insulin-like growth factor-I (IGF-I) exerts multiple actions, yet the role of IGF-I from different sources is poorly understood. Here, we explored the functional and behavioral consequences of the conditional deletion of Igf-I in the nervous system (Igf-I Δ/Δ), and demonstrated that long-term potentiation was impaired in hippocampal slices. Moreover, Igf-I Δ/Δ mice showed spatial memory deficits in the Morris water maze, and the significant sex-dependent differences displayed by Igf-I Ctrl/Ctrl mice disappeared in Igf-I Δ/Δ mice in the open field and rota-rod tests. Brain Igf-I deletion disorganized the granule cell layer of the dentate gyrus (DG), and it modified the relative expressions of GAD and VGLUT1, which are preferentially localized to inhibitory and excitatory presynaptic terminals. Furthermore, Igf-I deletion altered protein modules involved in receptor trafficking, synaptic proteins, and proteins that functionally interact with estrogen and androgen metabolism. Our findings indicate that brain IGF-I is crucial for long-term potentiation, and that it is involved in the regulation of spatial memory and sexual dimorphic behaviors, possibly by maintaining the granule cell layer structure and the stability of synaptic-related protein modules.


Assuntos
Fator de Crescimento Insulin-Like I , Potenciação de Longa Duração , Animais , Camundongos , Encéfalo/metabolismo , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Memória Espacial
4.
Cells ; 12(11)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37296598

RESUMO

Aging is a physiological process accompanied by a decline in cognitive performance. The cholinergic neurons of the basal forebrain provide projections to the cortex that are directly engaged in many cognitive processes in mammals. In addition, basal forebrain neurons contribute to the generation of different rhythms in the EEG along the sleep/wakefulness cycle. The aim of this review is to provide an overview of recent advances grouped around the changes in basal forebrain activity during healthy aging. Elucidating the underlying mechanisms of brain function and their decline is especially relevant in today's society as an increasingly aged population faces higher risks of developing neurodegenerative diseases such as Alzheimer's disease. The profound age-related cognitive deficits and neurodegenerative diseases associated with basal forebrain dysfunction highlight the importance of investigating the aging of this brain region.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Animais , Envelhecimento/fisiologia , Neurônios Colinérgicos , Cognição , Mamíferos
5.
ACS Appl Mater Interfaces ; 15(26): 31206-31213, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37345791

RESUMO

Since neurons were first cultured outside a living organism more than a century ago, a number of experimental techniques for their in vitro maintenance have been developed. These methods have been further adapted and refined to study specific neurobiological processes under controlled experimental conditions. Despite their limitations, the simplicity and visual accessibility of 2D cultures have enabled the study of the effects of trophic factors, adhesion molecules, and biophysical stimuli on neuron function and morphology. Nevertheless, the impact of fundamental properties of the surfaces to which neurons adhere when cultured in vitro has not been sufficiently considered. Here, we used an electroactive polymer with different electric poling states leading to different surface charges to evaluate the impact of the net electric surface charge on the behavior of primary neurons. Average negative and positive surface charges promote increased metabolic activity and enhance the maturation of primary neurons, demonstrating the relevance of considering the composition and electric charge of the culture surfaces. These findings further pave the way for the development of novel therapeutic strategies for the regeneration of neural tissues, particularly based on dynamic surface charge variation that can be induced in the electroactive films through mechanical solicitation.


Assuntos
Neurônios , Polímeros
6.
Proc Natl Acad Sci U S A ; 119(29): e2204527119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858325

RESUMO

Mice with insulin receptor (IR)-deficient astrocytes (GFAP-IR knockout [KO] mice) show blunted responses to insulin and reduced brain glucose uptake, whereas IR-deficient astrocytes show disturbed mitochondrial responses to glucose. While exploring the functional impact of disturbed mitochondrial function in astrocytes, we observed that GFAP-IR KO mice show uncoupling of brain blood flow with glucose uptake. Since IR-deficient astrocytes show higher levels of reactive oxidant species (ROS), this leads to stimulation of hypoxia-inducible factor-1α and, consequently, of the vascular endothelial growth factor angiogenic pathway. Indeed, GFAP-IR KO mice show disturbed brain vascularity and blood flow that is normalized by treatment with the antioxidant N-acetylcysteine (NAC). NAC ameliorated high ROS levels, normalized angiogenic signaling and mitochondrial function in IR-deficient astrocytes, and normalized neurovascular coupling in GFAP-IR KO mice. Our results indicate that by modulating glucose uptake and angiogenesis, insulin receptors in astrocytes participate in neurovascular coupling.


Assuntos
Astrócitos , Encéfalo , Insulina , Neovascularização Fisiológica , Acoplamento Neurovascular , Animais , Astrócitos/metabolismo , Encéfalo/irrigação sanguínea , Proteína Glial Fibrilar Ácida/genética , Glucose/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Receptor de Insulina/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Mol Psychiatry ; 27(4): 2182-2196, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35115701

RESUMO

Maladaptive coping behaviors are probably involved in post-traumatic stress disorders (PTSD), but underlying mechanisms are incompletely understood. We now report that mice lacking functional insulin-like growth factor I (IGF-I) receptors in orexin neurons of the lateral hypothalamus (Firoc mice) are unresponsive to the anxiolytic actions of IGF-I and develop PTSD-like behavior that is ameliorated by inhibition of orexin neurons. Conversely, systemic IGF-I treatment ameliorated PTSD-like behavior in a wild-type mouse model of PTSD (PTSD mice). Further, systemic IGF-I modified the GABA/Glutamate synaptic structure in orexin neurons of naïve wild-type mice by increasing the dephosphorylation of GABA(B) receptor subunit through inhibition of AMP-kinase (AMPK). Significantly, pharmacological inhibition of AMPK mimicked IGF-I, normalizing fear behavior in PTSD mice. Thus, we suggest that IGF-I enables coping behaviors by balancing E/I input onto orexin neurons in a context-dependent manner. These observations provide a novel therapeutic approach to PTSD through modulation of AMPK.


Assuntos
Fator de Crescimento Insulin-Like I , Transtornos de Estresse Pós-Traumáticos , Proteínas Quinases Ativadas por AMP , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/uso terapêutico , Adenilato Quinase/metabolismo , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Neurônios/metabolismo , Orexinas/metabolismo , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Ácido gama-Aminobutírico/metabolismo
8.
Cells ; 11(4)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35203366

RESUMO

Aging is accompanied by a decline in cognition that can be due to a lower IGF-I level. We studied response facilitation induced in primary somatosensory (S1) cortical neurons by repetitive stimulation of whiskers in young and old mice. Layer 2/3 and 5/6 neurons were extracellularly recorded in young (≤ 6 months of age) and old (≥ 20 month of age) anesthetized mice. IGF-I injection in S1 cortex (10 nM; 0.2 µL) increased whisker responses in young and old animals. A stimulation train at 8 Hz induced a long-lasting response facilitation in only layer 2/3 neurons of young animals. However, all cortical neurons from young and old animals showed long-lasting response facilitation when IGF-I was applied in the S1 cortex. The reduction in response facilitation in old animals can be due to a reduction in the IGF-I receptors as was indicated by the immunohistochemistry study. Furthermore, a reduction in the performance of a whisker discrimination task was observed in old animals. In conclusion, our findings indicate that there is a reduction in the synaptic plasticity of S1 neurons during aging that can be recovered by IGF-I. Therefore, it opens the possibility of use IGF-I as a therapeutic tool to ameliorate the effects of heathy aging.


Assuntos
Fator de Crescimento Insulin-Like I , Córtex Somatossensorial , Envelhecimento , Animais , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos , Plasticidade Neuronal/fisiologia , Vibrissas
9.
F1000Res ; 11: 663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36636477

RESUMO

Background: Pleiotropic actions of insulin and insulin-like growth factor I (IGF-I) in the brain are context- and cell-dependent, but whether this holds for their receptors (insulin receptor (IR) and IGF-I receptor (IGF-IR), respectively), is less clear. Methods: We compared mice lacking IR or IGF-IR in glial fibrillary astrocytic protein (GFAP)-expressing astrocytes in a tamoxifen-regulated manner, to clarify their role in this type of glial cells, as the majority of data of their actions in brain have been obtained in neurons. Results: We observed that mice lacking IR in GFAP astrocytes (GFAP IR KO mice) develop mood disturbances and maintained intact cognition, while at the same time show greater pathology when cross-bred with APP/PS1 mice, a model of familial Alzheimer´s disease (AD). Conversely, mice lacking IGF-IR in GFAP astrocytes (GFAP-IGF-IR KO mice) show cognitive disturbances, maintained mood tone, and show control-dependent changes in AD-like pathology. Conclusions: These observations confirm that the role of IR and IGF-IR in the brain is cell-specific and context-dependent.


Assuntos
Doença de Alzheimer , Receptor IGF Tipo 1 , Animais , Camundongos , Doença de Alzheimer/metabolismo , Astrócitos , Proteínas de Transporte/metabolismo , Insulina , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/metabolismo
10.
Front Aging Neurosci ; 13: 682388, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539376

RESUMO

It is known that aging is frequently accompanied by a decline in cognition. Furthermore, aging is associated with lower serum IGF-I levels that may contribute to this deterioration. We studied the effect of IGF-I in neurons of the horizontal diagonal band of Broca (HDB) of young (≤6 months old) and old (≥20-month-old) mice to determine if changes in the response of these neurons to IGF-I occur along with aging. Local injection of IGF-I in the HDB nucleus increased their neuronal activity and induced fast oscillatory activity in the electrocorticogram (ECoG). Furthermore, IGF-I facilitated tactile responses in the primary somatosensory cortex elicited by air-puffs delivered in the whiskers. These excitatory effects decreased in old mice. Immunohistochemistry showed that cholinergic HDB neurons express IGF-I receptors and that IGF-I injection increased the expression of c-fos in young, but not in old animals. IGF-I increased the activity of optogenetically-identified cholinergic neurons in young animals, suggesting that most of the IGF-I-induced excitatory effects were mediated by activation of these neurons. Effects of aging were partially ameliorated by chronic IGF-I treatment in old mice. The present findings suggest that reduced IGF-I activity in old animals participates in age-associated changes in cortical activity.

11.
J Neurosci ; 41(22): 4768-4781, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33911021

RESUMO

Insulin-like growth factor-I (IGF-I) signaling plays a key role in learning and memory processes. While the effects of IGF-I on neurons have been studied extensively, the involvement of astrocytes in IGF-I signaling and the consequences on synaptic plasticity and animal behavior remain unknown. We have found that IGF-I induces long-term potentiation (LTPIGFI) of the postsynaptic potentials that is caused by a long-term depression of inhibitory synaptic transmission in mice. We have demonstrated that this long-lasting decrease in the inhibitory synaptic transmission is evoked by astrocytic activation through its IGF-I receptors (IGF-IRs). We show that LTPIGFI not only increases the output of pyramidal neurons, but also favors the NMDAR-dependent LTP, resulting in the crucial information processing at the barrel cortex since specific deletion of IGF-IR in cortical astrocytes impairs the whisker discrimination task. Our work reveals a novel mechanism and functional consequences of IGF-I signaling on cortical inhibitory synaptic plasticity and animal behavior, revealing that astrocytes are key elements in these processes.SIGNIFICANCE STATEMENT Insulin-like growth factor-I (IGF-I) signaling plays key regulatory roles in multiple processes of brain physiology, such as learning and memory. Yet, the underlying mechanisms remain largely undefined. Here we demonstrate that astrocytes respond to IGF-I signaling, elevating their intracellular Ca2+ and stimulating the release of ATP/adenosine, which triggers the LTD of cortical inhibitory synapses, thus regulating the behavioral task performance related to cortical sensory information processing. Therefore, the present work represents a major conceptual advance in our knowledge of the cellular basis of IGF-I signaling in brain function, by including for the first time astrocytes as key mediators of IGF-I actions on synaptic plasticity, cortical sensory information discrimination and animal behavior.


Assuntos
Adenosina/metabolismo , Astrócitos/metabolismo , Plasticidade Neuronal/fisiologia , Receptor IGF Tipo 1/metabolismo , Córtex Somatossensorial/fisiologia , Animais , Comportamento Animal/fisiologia , Regulação para Baixo , Aprendizagem/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/fisiologia
12.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352990

RESUMO

Obesity is a risk factor for Alzheimer's disease (AD), but underlying mechanisms are not clear. We analyzed peripheral clearance of amyloid ß (Aß) in overweight mice because its systemic elimination may impact brain Aß load, a major landmark of AD pathology. We also analyzed whether circulating insulin-like growth factor I (IGF-I) intervenes in the effects of overweight as this growth factor modulates brain Aß clearance and is increased in the serum of overweight mice. Overweight mice showed increased Aß accumulation by the liver, the major site of elimination of systemic Aß, but unaltered brain Aß levels. We also found that Aß accumulation by hepatocytes is stimulated by IGF-I, and that mice with low serum IGF-I levels show reduced liver Aß accumulation-ameliorated by IGF-I administration, and unchanged brain Aß levels. In the brain, IGF-I favored the association of its receptor (IGF-IR) with the Aß precursor protein (APP), and at the same time, stimulated non-amyloidogenic processing of APP in astrocytes, as indicated by an increased sAPPα/sAPPß ratio after IGF-I treatment. Since serum IGF-I enters into the brain in an activity-dependent manner, we analyzed in overweight mice the effect of brain activation by environmental enrichment (EE) on brain IGF-IR phosphorylation and its association to APP, as a readout of IGF-I activity. After EE, significantly reduced brain IGF-IR phosphorylation and APP/IGF-IR association were found in overweight mice as compared to lean controls. Collectively, these results indicate that a high-fat diet influences peripheral clearance of Aß without affecting brain Aß load. Increased serum IGF-I likely contributes to enhanced peripheral Aß clearance in overweight mice, without affecting brain Aß load probably because its brain entrance is reduced.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Dieta Hiperlipídica , Fator de Crescimento Insulin-Like I/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Biomarcadores , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Hepatócitos/metabolismo , Camundongos , Camundongos Transgênicos , Sobrepeso
13.
FASEB J ; 34(12): 15975-15990, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33070417

RESUMO

Although sleep disturbances are common co-morbidities of metabolic diseases, the underlying processes linking both are not yet fully defined. Changes in the duration of sleep are paralleled by changes in the levels of insulin-like growth factor-I (IGF-I), an anabolic hormone that shows a circadian pattern in the circulation and activity-dependent entrance in the brain. However, the specific role, if any, of IGF-I in this universal homeostatic process remains poorly understood. We now report that the activity of orexin neurons, a discrete cell population in the lateral hypothalamus that is involved in the circadian sleep/wake cycle and arousal, is modulated by IGF-I. Furthermore, mice with blunted IGF-I receptor activity in orexin neurons have lower levels of orexin in the hypothalamus, show altered electro-corticographic patterns with predominant slow wave activity, and reduced onset-sleep latency. Collectively, these results extend the role in the brain of this pleiotropic growth factor to shaping sleep architecture through the regulation of orexin neurons. We speculate that poor sleep quality associated to diverse conditions may be related to disturbed brain IGF-I input to orexin neurons.


Assuntos
Hipotálamo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Neurônios/metabolismo , Orexinas/metabolismo , Sono/fisiologia , Animais , Ritmo Circadiano/fisiologia , Feminino , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia
14.
J Alzheimers Dis ; 69(4): 979-987, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156175

RESUMO

Increasing evidence supports the notion that Alzheimer's disease (AD), a condition that presents heterogeneous pathological disturbances, is also associated to perturbed metabolic function affecting insulin and insulin-like growth factor I (IGF-I). While impaired insulin activity leading to insulin resistance has been associated to AD, whether altered IGF-I function affects the disease is not entirely clear. Despite the limitations of mouse models to mimic AD pathology, we took advantage that serum IGF-I deficient mice (LID mice) present many functional perturbations present in AD, most prominently cognitive loss, which is reversed by treatment with systemic IGF-I. We analyzed whether these mice display other pathological traits that are usual co-morbidities of AD. We found that LID mice not only display cognitive disturbances, but also show altered mood and sociability, increased susceptibility to epileptiform activity, and a disturbed sleep/wake cycle. Collectively, these data suggest that reduced IGF-I activity contributes to heterogeneous deficits commonly associated to AD. We suggest that impaired IGF-I activity needs to be taken into consideration when modeling this condition.


Assuntos
Doença de Alzheimer/etiologia , Fator de Crescimento Insulin-Like I/deficiência , Doença de Alzheimer/complicações , Animais , Transtornos Cognitivos/complicações , Modelos Animais de Doenças , Feminino , Humanos , Fator de Crescimento Insulin-Like I/análise , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Transtornos do Humor/complicações , Comportamento Social
15.
16.
Neuropharmacology ; 136(Pt B): 216-222, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28859884

RESUMO

Astrocytes are major players in brain glucose metabolism, supporting neuronal needs on demand through mechanisms that are not yet entirely clear. Understanding glucose metabolism in astrocytes is therefore of great consequence to unveil novel targets and develop new drugs to restore brain energy balance in pathology. Contrary to what has been held for many years, we now present evidence that insulin, in association with the related insulin-like growth factor I (IGF-I) modulates brain glucose metabolism through a concerted action on astrocytes. Cooperativity of insulin and IGF-I relies on the IGF-I receptor (IGF-IR), that acts as a scaffold of Glucose Transporter 1 (GluT1) regulating its activity by retaining it in the cytoplasm or, in response to a concerted action of insulin and IGF-I, translocating it to the cell membrane. Regulated translocation of GluT1 to the cell membrane by IGF-IR involves an intricate repertoire of protein-protein interactions amenable to drug modulation, particularly by interfering with IGF-IR/GluT1 interactions. We propose that this mechanism accounts for a substantial proportion of basal and regulated glucose uptake by astrocytes as GluT1 is the major glucose transporter in these brain cells. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Humanos
17.
PLoS One ; 12(5): e0178247, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542392

RESUMO

Age is the main risk factor for Alzheimer´s disease (AD). With an increasingly aging population, development of affordable screening techniques to determine cognitive status will help identify population-at-risk for further follow-up. Because physical exercise is known to modulate cognitive performance, we used it as a functional test of cognitive health. Mice were submitted to treadmill running at moderate speed for 30 min, and their brain activity was monitored before and after exercise using electrocorticogram (ECG) recordings. After exercise, normal, but not APP/PS1 mice, a well established AD model, showed significantly increased ECG theta rhythm. At the same time normal, but not AD mice, showed significantly enhanced performance in a spatial memory test after exercise. Therefore, we postulate that a running bout coupled to pre- and post-exercise brain activity recordings will help identify individuals with cognitive alterations, by determining the presence or absence of exercise-specific changes in brain activity. Work in humans using a bout of moderate exercise plus electroencephalography, a clinically affordable procedure, is warranted.


Assuntos
Precursor de Proteína beta-Amiloide/fisiologia , Encéfalo/fisiologia , Cognição/fisiologia , Memória/fisiologia , Condicionamento Físico Animal/fisiologia , Presenilina-1/fisiologia , Doença de Alzheimer , Animais , Comportamento Animal , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Diabetes ; 66(1): 64-74, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27999108

RESUMO

Brain activity requires a flux of glucose to active regions to sustain increased metabolic demands. Insulin, the main regulator of glucose handling in the body, has been traditionally considered not to intervene in this process. However, we now report that insulin modulates brain glucose metabolism by acting on astrocytes in concert with IGF-I. The cooperation of insulin and IGF-I is needed to recover neuronal activity after hypoglycemia. Analysis of underlying mechanisms show that the combined action of IGF-I and insulin synergistically stimulates a mitogen-activated protein kinase/protein kinase D pathway resulting in translocation of GLUT1 to the cell membrane through multiple protein-protein interactions involving the scaffolding protein GAIP-interacting protein C terminus and the GTPase RAC1. Our observations identify insulin-like peptides as physiological modulators of brain glucose handling, providing further support to consider the brain as a target organ in diabetes.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Animais , Transporte Biológico/fisiologia , Transportador de Glucose Tipo 1/metabolismo , Glicogênio/metabolismo , Imunoensaio , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Ácido Láctico/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Plasmídeos , Reação em Cadeia da Polimerase , Tomografia por Emissão de Pósitrons
19.
Diabetologia ; 60(3): 597-606, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27928614

RESUMO

AIMS/HYPOTHESIS: Type 2 diabetes is likely to be an independent risk factor for hippocampal-based memory dysfunction, although this complication has yet to be investigated in detail. As dysregulated glycometabolism in peripheral tissues is a key symptom of type 2 diabetes, it is hypothesised that diabetes-mediated memory dysfunction is also caused by hippocampal glycometabolic dysfunction. If so, such dysfunction should also be ameliorated with moderate exercise by normalising hippocampal glycometabolism, since 4 weeks of moderate exercise enhances memory function and local hippocampal glycogen levels in normal animals. METHODS: The hippocampal glycometabolism in OLETF rats (model of human type 2 diabetes) was assessed and, subsequently, the effects of exercise on memory function and hippocampal glycometabolism were investigated. RESULTS: OLETF rats, which have memory dysfunction, exhibited higher levels of glycogen in the hippocampus than did control rats, and breakdown of hippocampal glycogen with a single bout of exercise remained unimpaired. However, OLETF rats expressed lower levels of hippocampal monocarboxylate transporter 2 (MCT2, a transporter for lactate to neurons). Four weeks of moderate exercise improved spatial memory accompanied by further increase in hippocampal glycogen levels and restoration of MCT2 expression independent of neurotrophic factor and clinical symptoms in OLETF rats. CONCLUSIONS/INTERPRETATION: Our findings are the first to describe detailed profiles of glycometabolism in the type 2 diabetic hippocampus and to show that 4 weeks of moderate exercise improves memory dysfunction in type 2 diabetes via amelioration of dysregulated hippocampal glycometabolism. Dysregulated hippocampal lactate-transport-related glycometabolism is a possible aetiology of type-2-diabetes-mediated memory dysfunction.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Hipocampo/metabolismo , Memória/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Glicemia/metabolismo , Western Blotting , Peso Corporal/fisiologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/sangue , Ingestão de Alimentos/fisiologia , Glicogênio/metabolismo , Masculino , Ratos , Ratos Endogâmicos OLETF
20.
Cell ; 166(4): 867-880, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27518562

RESUMO

We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Transdução de Sinais , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Barreira Hematoencefálica , Retículo Endoplasmático/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Homeostase , Camundongos , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...