Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38069680

RESUMO

The neritid snail Theodoxus fluviatilis is found across habitats differing in salinity, from shallow waters along the coast of the Baltic Sea to lakes throughout Europe. Living close to the water surface makes this species vulnerable to changes in salinity in their natural habitat, and the lack of a free-swimming larval stage limits this species' dispersal. Together, these factors have resulted in a patchy distribution of quite isolated populations differing in their salinity tolerances. In preparation for investigating the mechanisms underlying the physiological differences in osmoregulation between populations that cannot be explained solely by phenotypic plasticity, we present here an annotated draft genome assembly for T. fluviatilis, generated using PacBio long reads, Illumina short reads, and transcriptomic data. While the total assembly size (1045 kb) is similar to those of related species, it remains highly fragmented (N scaffolds = 35,695; N50 = 74 kb) though moderately high in complete gene content (BUSCO single copy complete: 74.3%, duplicate: 2.6%, fragmented: 10.6%, missing: 12.5% using metazoa n = 954). Nevertheless, we were able to generate gene annotations of 21,220 protein-coding genes (BUSCO single copy complete: 65.1%, duplicate: 16.7%, fragmented: 9.1%, missing: 9.1% using metazoa n = 954). Not only will this genome facilitate comparative evolutionary studies across Gastropoda, as this is the first genome assembly for the basal snail family Neritidae, it will also greatly facilitate the study of salinity tolerance in this species. Additionally, we discuss the challenges of working with a species where high molecular weight DNA isolation is very difficult.


Assuntos
Genoma , Caramujos , Animais , Caramujos/genética , Europa (Continente) , Anotação de Sequência Molecular , Perfilação da Expressão Gênica
2.
ISME J ; 17(11): 1953-1965, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37673969

RESUMO

Most animals and plants have associated microorganisms, collectively referred to as their microbiomes, which can provide essential functions. Given their importance, host-associated microbiomes have the potential to contribute substantially to adaptation of the host-microbiome assemblage (the "metaorganism"). Microbiomes may be especially important for rapid adaptation to novel environments because microbiomes can change more rapidly than host genomes. However, it is not well understood how hosts and microbiomes jointly contribute to metaorganism adaptation. We developed a model system with which to disentangle the contributions of hosts and microbiomes to metaorganism adaptation. We established replicate mesocosms containing the nematode Caenorhabditis elegans co-cultured with microorganisms in a novel complex environment (laboratory compost). After approximately 30 nematode generations (100 days), we harvested worm populations and associated microbiomes, and subjected them to a common garden experiment designed to unravel the impacts of microbiome composition and host genetics on metaorganism adaptation. We observed that adaptation took different trajectories in different mesocosm lines, with some increasing in fitness and others decreasing, and that interactions between host and microbiome played an important role in these contrasting evolutionary paths. We chose two exemplary mesocosms (one with a fitness increase and one with a decrease) for detailed study. For each example, we identified specific changes in both microbiome composition (for both bacteria and fungi) and nematode gene expression associated with each change in fitness. Our study provides experimental evidence that adaptation to a novel environment can be jointly influenced by host and microbiome.


Assuntos
Microbiota , Animais , Evolução Biológica , Genoma , Bactérias/genética
3.
Mol Biol Evol ; 38(5): 1924-1942, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33386848

RESUMO

Revealing the mechanisms underlying the breathtaking morphological diversity observed in nature is a major challenge in Biology. It has been established that recurrent mutations in hotspot genes cause the repeated evolution of morphological traits, such as body pigmentation or the gain and loss of structures. To date, however, it remains elusive whether hotspot genes contribute to natural variation in the size and shape of organs. As natural variation in head morphology is pervasive in Drosophila, we studied the molecular and developmental basis of differences in compound eye size and head shape in two closely related Drosophila species. We show differences in the progression of retinal differentiation between species and we applied comparative transcriptomics and chromatin accessibility data to identify the GATA transcription factor Pannier (Pnr) as central factor associated with these differences. Although the genetic manipulation of Pnr affected multiple aspects of dorsal head development, the effect of natural variation is restricted to a subset of the phenotypic space. We present data suggesting that this developmental constraint is caused by the coevolution of expression of pnr and its cofactor u-shaped (ush). We propose that natural variation in expression or function of highly connected developmental regulators with pleiotropic functions is a major driver for morphological evolution and we discuss implications on gene regulatory network evolution. In comparison to previous findings, our data strongly suggest that evolutionary hotspots are not the only contributors to the repeated evolution of eye size and head shape in Drosophila.


Assuntos
Evolução Biológica , Olho Composto de Artrópodes/anatomia & histologia , Drosophila/anatomia & histologia , Pleiotropia Genética , Animais , Olho Composto de Artrópodes/crescimento & desenvolvimento , Drosophila/fisiologia , Proteínas de Drosophila/metabolismo , Feminino , Redes Reguladoras de Genes , Cabeça/anatomia & histologia , Larva/crescimento & desenvolvimento , Masculino , Especificidade da Espécie , Fatores de Transcrição/metabolismo , Transcriptoma
4.
Sci Rep ; 11(1): 2307, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504886

RESUMO

The historical phylogeography of Ostrea edulis was successfully depicted in its native range for the first time using ancient DNA methods on dry shells from museum collections. This research reconstructed the historical population structure of the European flat oyster across Europe in the 1870s-including the now extinct population in the Wadden Sea. In total, four haplogroups were identified with one haplogroup having a patchy distribution from the North Sea to the Atlantic coast of France. This irregular distribution could be the result of translocations. The other three haplogroups are restricted to narrow geographic ranges, which may indicate adaptation to local environmental conditions or geographical barriers to gene flow. The phylogenetic reconstruction of the four haplogroups suggests the signatures of glacial refugia and postglacial expansion. The comparison with present-day O. edulis populations revealed a temporally stable population genetic pattern over the past 150 years despite large-scale translocations. This historical phylogeographic reconstruction was able to discover an autochthonous population in the German and Danish Wadden Sea in the late nineteenth century, where O. edulis is extinct today. The genetic distinctiveness of a now-extinct population hints at a connection between the genetic background of O. edulis in the Wadden Sea and for its absence until today.


Assuntos
Ostrea/genética , Animais , Ostrea/classificação , Filogenia , Refúgio de Vida Selvagem
5.
Genomics ; 112(6): 4297-4303, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32629099

RESUMO

Extensive fishing has led to fish stock declines throughout the last decades. While clear stock identification is required for designing management schemes, stock delineation is problematic due to generally low levels of genetic structure in marine species. The development of genomic resources can help to solve this issue. Here, we present the first mitochondrial and nuclear draft genome assemblies of three economically important Mediterranean fishes, the white seabream, the striped red mullet, and the comber. The assemblies are between 613 and 785 Mbp long and contain between 27,222 and 32,375 predicted genes. They were used as references to map Restriction-site Associated DNA markers, which were developed with a single-digest approach. This approach provided between 15,710 and 21,101 Single Nucleotide Polymorphism markers per species. These genomic resources will allow uncovering subtle genetic structure, identifying stocks, assigning catches to populations and assessing connectivity. Furthermore, the annotated genomes will help to characterize adaptive divergence.


Assuntos
Peixes/genética , Genoma , Animais , Proteínas de Peixes/genética , Marcadores Genéticos , Genoma Mitocondrial , Genômica , Mar Mediterrâneo , Perciformes/genética , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
6.
PLoS Genet ; 14(1): e1007180, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29360820

RESUMO

Drosophila melanogaster head development represents a valuable process to study the developmental control of various organs, such as the antennae, the dorsal ocelli and the compound eyes from a common precursor, the eye-antennal imaginal disc. While the gene regulatory network underlying compound eye development has been extensively studied, the key transcription factors regulating the formation of other head structures from the same imaginal disc are largely unknown. We obtained the developmental transcriptome of the eye-antennal discs covering late patterning processes at the late 2nd larval instar stage to the onset and progression of differentiation at the end of larval development. We revealed the expression profiles of all genes expressed during eye-antennal disc development and we determined temporally co-expressed genes by hierarchical clustering. Since co-expressed genes may be regulated by common transcriptional regulators, we combined our transcriptome dataset with publicly available ChIP-seq data to identify central transcription factors that co-regulate genes during head development. Besides the identification of already known and well-described transcription factors, we show that the transcription factor Hunchback (Hb) regulates a significant number of genes that are expressed during late differentiation stages. We confirm that hb is expressed in two polyploid subperineurial glia cells (carpet cells) and a thorough functional analysis shows that loss of Hb function results in a loss of carpet cells in the eye-antennal disc. Additionally, we provide for the first time functional data indicating that carpet cells are an integral part of the blood-brain barrier. Eventually, we combined our expression data with a de novo Hb motif search to reveal stage specific putative target genes of which we find a significant number indeed expressed in carpet cells.


Assuntos
Barreira Hematoencefálica/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Cabeça/embriologia , Neuroglia/metabolismo , Retina/embriologia , Fatores de Transcrição/fisiologia , Animais , Animais Geneticamente Modificados , Barreira Hematoencefálica/embriologia , Barreira Hematoencefálica/metabolismo , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Embrião não Mamífero , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Neuroglia/fisiologia , Organogênese/genética , Retina/citologia , Retina/metabolismo , Fatores de Transcrição/genética
7.
BMC Biol ; 15(1): 62, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28756775

RESUMO

BACKGROUND: The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. RESULTS: We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. CONCLUSIONS: Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.


Assuntos
Evolução Molecular , Duplicação Gênica , Genoma , Aranhas/genética , Animais , Feminino , Masculino , Sintenia
8.
BMC Genomics ; 17: 392, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27220689

RESUMO

BACKGROUND: RNA-seq based on short reads generated by next generation sequencing technologies has become the main approach to study differential gene expression. Until now, the main applications of this technique have been to study the variation of gene expression in a whole organism, tissue or cell type under different conditions or at different developmental stages. However, RNA-seq also has a great potential to be used in evolutionary studies to investigate gene expression divergence in closely related species. RESULTS: We show that the published genomes and annotations of the three closely related Drosophila species D. melanogaster, D. simulans and D. mauritiana have limitations for inter-specific gene expression studies. This is due to missing gene models in at least one of the genome annotations, unclear orthology assignments and significant gene length differences in the different species. A comprehensive evaluation of four statistical frameworks (DESeq2, DESeq2 with length correction, RPKM-limma and RPKM-voom-limma) shows that none of these methods sufficiently accounts for inter-specific gene length differences, which inevitably results in false positive candidate genes. We propose that published reference genomes should be re-annotated before using them as references for RNA-seq experiments to include as many genes as possible and to account for a potential length bias. We present a straight-forward reciprocal re-annotation pipeline that allows to reliably compare the expression for nearly all genes annotated in D. melanogaster. CONCLUSIONS: We conclude that our reciprocal re-annotation of previously published genomes facilitates the analysis of significantly more genes in an inter-specific differential gene expression study. We propose that the established pipeline can easily be applied to re-annotate other genomes of closely related animals and plants to improve comparative expression analyses.


Assuntos
Mapeamento Cromossômico , Perfilação da Expressão Gênica , Anotação de Sequência Molecular/métodos , Análise de Sequência de RNA , Animais , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Drosophila/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Genoma , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos , Especificidade da Espécie , Transcriptoma
9.
PLoS Biol ; 12(11): e1002005, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25423365

RESUMO

Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.


Assuntos
Artrópodes/genética , Genoma , Sintenia , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Metilação de DNA , Evolução Molecular , Feminino , Genoma Mitocondrial , Hormônios/genética , Masculino , Família Multigênica , Filogenia , Polimorfismo Genético , Proteínas Quinases/genética , RNA não Traduzido/genética , Receptores Odorantes/genética , Selenoproteínas/genética , Cromossomos Sexuais , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...