Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 35(42)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37451255

RESUMO

Transport coefficients like shear, bulk and longitudinal viscosities are sensitive to the intermolecular interaction potential and finite size effects when are numerically determined. For the hard-sphere (HS) fluid, such transport properties are determined almost exclusively with computer simulations. However, their systematic determination and analysis throughout shear stress correlation functions and the Green-Kubo formalism can not be done due to discontinuous nature of the interaction potential. Here, we use the pseudo hard-sphere (PHS) potential to determine pressure correlation functions as a function of volume fraction in order to compute mentioned viscosities. Simulation results are compared to available event-driven molecular dynamics of the HS fluid and also used to propose empirical corrections for the Chapman-Enskog zero density limit of shear viscosity. Moreover, we show that PHS potential is a reliable representation of the HS fluid and can be used to compute transport coefficients. The molecular simulation results of the present work are valuable for further exploration of HS-type fluids or extend the approach to compute transport properties of hard-colloid suspensions.

2.
J Phys Condens Matter ; 34(22)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35263718

RESUMO

In this work a systematic study over a wide number of final thermodynamic states for two gel-forming liquids was performed. Such two kind of gel formers are distinguished by their specific interparticle interaction potential. We explored several thermodynamic states determining the thermodynamic, structural and dynamic properties of both liquids after a sudden temperature change. The thermodynamic analysis allows to identify that the liquid with short range attraction and long range repulsion lacks of a stable gas-liquid phase separation liquid, in contrast with the liquid with short range attractions. Thus, although for some thermodynamic states the structural behavior, measured by the static structure factor, is similar to and characteristic of the gel phase, for the short range attractive fluid the gel phase is a consequence of a spinodal decomposition process. In contrast, gelation in the short range attraction and long range repulsion liquid is not due to a phase separation. We also analyze the similarities and differences of the dynamic behavior of both systems through the analysis of the mean square displacement, the self part of the intermediate scattering function, the diffusion coefficient and theαrelaxation time. Finally, using one of the main results of the non-equilibrium self-consistent generalized Langevin equation theory (NE-SCGLE), we determine the dynamic arrest phase diagram in the volume fraction and temperature (φvsT) plane.

3.
J Phys Condens Matter ; 34(16)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35108690

RESUMO

The discrete hard-sphere (HS), square-well (SW), and square-shoulder (SS) potentials have become the battle horse of molecular and complex fluids because they contain the basic elements to describe the thermodynamic, structural, and transport properties of both types of fluids. The mathematical simplicity of these discrete potentials allows us to obtain some analytical results despite the nature and complexity of the modeled systems. However, the divergent forces arising at the potential discontinuities may lead to severe issues when discrete potentials are used in computer simulations with uniform time steps. One of the few routes to avoid these technical problems is to replace the discrete potentials with continuous and differentiable forms built under strict physical criteria to capture the correct phenomenology. The match of the second virial coefficient between the discrete and the soft potentials has recently been successfully used to construct a continuous representation that mimics some physical properties of HSs (Báezet al2018J. Chem. Phys.149164907). In this paper, we report an extension of this idea to construct soft representations of the discrete SW and SS potentials. We assess the accuracy of the resulting soft potential by studying structural and thermodynamic properties of the modeled systems by using extensive Brownian and molecular dynamics computer simulations. Besides, Monte Carlo results for the original discrete potentials are used as benchmark. We have also implemented the discrete interaction models and their soft counterparts within the integral equations theory of liquids, finding that the most widely used approximations predict almost identical results for both potentials.

4.
J Phys Condens Matter ; 34(14)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35026739

RESUMO

Competing interaction fluids have become ideal model systems to study a large number of phenomena, for example, the formation of intermediate range order structures, condensed phases not seen in fluids driven by purely attractive or repulsive forces, the onset of particle aggregation under in- and out-of-equilibrium conditions, which results in the birth of reversible and irreversible aggregates or clusters whose topology and morphology depend additionally on the thermodynamic constrictions, and a particle dynamics that has a strong influence on the transport behaviour and rheological properties of the fluid. In this contribution, we study a system of particles interacting through a potential composed by a continuous succession of a short-ranged square-well (SW), an intermediate-ranged square-shoulder and a long-ranged SW. This potential model is chosen to systematically analyse the contribution of every component of the interaction potential on the phase behaviour, the microstructure, the morphology of the resulting aggregates and the transport phenomena of fluids described by competing interactions. Our results indicate that the inclusion of a barrier and a second well leads to new and interesting effects, which in addition result in variations of the physical properties associated to the competition among interactions.

5.
Soft Matter ; 17(7): 1975-1984, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33427848

RESUMO

In this work we implement a machine learning method to predict the thermodynamic state of a liquid using only its microscopic structure provided by the radial distribution function (RDF). The main goal is to determine the equation of state of the system. The goal is achieved by predicting the density, temperature or both at the same time using only the RDF. We implement and train a machine learning feed forward artificial neural network (ANN) to address the different cases of interest where single or simultaneous predictions are done. Due to its versatility, in this study the Lennard-Jones (LJ) fluid is used as the reference system. The ANN is trained in a wide range of densities and temperatures, covering the liquid-vapour coexistence, liquid phase and supercritical states. We show that the overall percentage relative error of most of the predictions in different cases of study is around 3%. As a practical case of study we use the ANN predictions to determine the pressure equation of state for different isotherms and we found a very good agreement with respect to the exact results. Our ANN implementation is a versatile and useful tool to predict thermodynamic state variables when some information is unknown and, consequently, to enhance the thermodynamic description of liquids.

6.
J Chem Phys ; 149(16): 164907, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384675

RESUMO

In the same sense as in the extended law of corresponding states [M. Noro and D. Frenkel, J. Chem. Phys. 113, 2941 (2000)], we propose the use of the second virial coefficient to map the hard-sphere potential onto a continuous potential. We show that this criterion provides accurate results when the continuous potential is used, for example, in computer simulations to reproduce the physical properties of systems with hard-core interactions. We also demonstrate that this route is straightforwardly applicable to any spatial dimension, does not depend on the particle density and, from a numerical point of view, is easy to implement.

7.
J Chem Phys ; 149(14): 144501, 2018 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-30316277

RESUMO

We present a systematic study of the self-diffusion coefficient for a fluid of particles interacting via the square-well pair potential by means of molecular dynamics simulations in the canonical (N, V, T) ensemble. The discrete nature of the interaction potential is modeled by the constant force approximation, and the self-diffusion coefficient is determined for several fluid densities at supercritical thermodynamic states. The dependence of the self-diffusion coefficient on the potential range λ is analyzed in the range of 1.1 ≤ λ ≤ 1.5. The obtained simulation results are in agreement with the self-diffusion coefficient predicted by the Enskog method. Additionally, we show that the diffusion coefficient is very sensitive to the potential range λ. Our results for the self-diffusion coefficient times density extrapolate well to the values in the zero-density limit obtained from the Chapman-Enskog theory for dilute gases. The constant force approximation used in this work to model the discrete pair potentials has shown to be an excellent scheme to compute the transport properties of square-well fluids using molecular dynamics simulations. Finally, the simulation results presented here are useful for improving theoretical approaches, such as the Enskog method.

8.
Phys Chem Chem Phys ; 20(10): 6917-6928, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29464245

RESUMO

We report on the friction and diffusion of a single mobile nano-colloidal disk, whose size and mass are one and two orders of magnitude, respectively, greater than the molecules of the host solvent; all particles are restricted to move in a two-dimensional space. Using molecular dynamics simulations, the variation of the transport coefficients as a function of the thermodynamic state of the supporting fluid, in particular, around those states in the neighbourhood of the liquid-liquid phase coexistence, is investigated. The diffusion coefficient is determined through the fit of the mean-square displacement at long times and with the Green-Kubo relationship for the velocity autocorrelation function, whereas the friction coefficient is computed from the correlation of the fluctuating force. From the determination of the transport properties, the applicability of the Stokes-Einstein relation in two dimensions around the second critical point is discussed.

9.
Phys Chem Chem Phys ; 18(26): 17335-40, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27232761

RESUMO

The physical properties of colloidal particles suspended in an aqueous environment are well-understood when the latter is considered to be a continuum and a structureless medium. However, this approach fails to explain complex phenomena, for example, the critical Casimir forces among colloids and the colloidal self-assembly near critical solvents, and the inertial contribution of the solvent molecules on the diffusion of non-spherical Brownian particles. Therefore, the role played by the solvent on the physical properties of colloidal dispersions is of paramount relevance. Recently, there has been an interest in the (non-trivial) diffusion mechanisms of a nano-colloidal particle in a solvent that undergoes a vapour-liquid transition. Nonetheless, the models typically used to incorporate the solvent details do not capture quantitatively the thermodynamic properties of real substances. It is then important to study the Brownian motion of colloids in more realistic models. To reach such goal, one first has to characterise the thermodynamic states and the microscopic features of the solvent. Hence, in this contribution, we have investigated the coexistence densities of a core-softened potential in two- and three-dimensions, whose potential parameters are able to capture some anomalies of water. We show that in the two-dimensional case, the potential model exhibits, besides the normal vapour-liquid coexistence region, additional liquid-liquid coexistence densities. We particularly focus our attention to the structural properties and the dynamical behaviour of the solvent around the liquid-liquid critical point and assess the differences with the three-dimensional case.

10.
Phys Chem Chem Phys ; 17(29): 19557-68, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26145458

RESUMO

Brownian motion is a feature of colloidal particles immersed in a liquid-like environment. Usually, it can be described by means of the generalised Langevin equation (GLE) within the framework of the Mori theory. In principle, all quantities that appear in the GLE can be calculated from the molecular information of the whole system, i.e., colloids and solvent molecules. In this work, by means of extensive Molecular Dynamics simulations, we study the effects of the microscopic details and the thermodynamic state of the solvent on the movement of a single nano-colloid. In particular, we consider a two-dimensional model system in which the mass and size of the colloid are two and one orders of magnitude, respectively, larger than the ones associated with the solvent molecules. The latter ones interact via a Lennard-Jones-type potential to tune the nature of the solvent, i.e., it can be either repulsive or attractive. We choose the linear momentum of the Brownian particle as the observable of interest in order to fully describe the Brownian motion within the Mori framework. We particularly focus on the colloid diffusion at different solvent densities and two temperature regimes: high and low (near the critical point) temperatures. To reach our goal, we have rewritten the GLE as a second kind Volterra integral in order to compute the memory kernel in real space. With this kernel, we evaluate the momentum-fluctuating force correlation function, which is of particular relevance since it allows us to establish when the stationarity condition has been reached. Our findings show that even at high temperatures, the details of the attractive interaction potential among solvent molecules induce important changes in the colloid dynamics. Additionally, near the critical point, the dynamical scenario becomes more complex; all the correlation functions decay slowly in an extended time window, however, the memory kernel seems to be only a function of the solvent density. Thus, the explicit inclusion of the solvent in the description of Brownian motion allows us to better understand the behaviour of the memory kernel at those thermodynamic states near the critical region without any further approximation. This information is useful to elaborate more realistic descriptions of Brownian motion that take into account the particular details of the host medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...