Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273552

RESUMO

We created a database of lost and rediscovered tetrapod species, identified patterns in their distribution and factors influencing rediscovery. Tetrapod species are being lost at a faster rate than they are being rediscovered, due to slowing rates of rediscovery for amphibians, birds and mammals, and rapid rates of loss for reptiles. Finding lost species and preventing future losses should therefore be a conservation priority. By comparing the taxonomic and spatial distribution of lost and rediscovered tetrapod species, we have identified regions and taxa with many lost species in comparison to those that have been rediscovered-our results may help to prioritise search effort to find them. By identifying factors that influence rediscovery, we have improved our ability to broadly distinguish the types of species that are likely to be found from those that are not (because they are likely to be extinct). Some lost species, particularly those that are small and perceived to be uncharismatic, may have been neglected in terms of conservation effort, and other lost species may be hard to find due to their intrinsic characteristics and the characteristics of the environments they occupy (e.g. nocturnal species, fossorial species and species occupying habitats that are more difficult to survey such as wetlands). These lost species may genuinely await rediscovery. However, other lost species that possess characteristics associated with rediscovery (e.g. large species) and that are also associated with factors that negatively influence rediscovery (e.g. those occupying small islands) are more likely to be extinct. Our results may foster pragmatic search protocols that prioritise lost species likely to still exist.


Assuntos
Ecossistema , Extinção Biológica , Animais , Anfíbios , Áreas Alagadas , Mamíferos , Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Biodiversidade
2.
Nat Commun ; 14(1): 1389, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914628

RESUMO

Protected Areas (PAs) are the cornerstone of biodiversity conservation. Here, we collated distributional data for >14,000 (~70% of) species of amphibians and reptiles (herpetofauna) to perform a global assessment of the conservation effectiveness of PAs using species distribution models. Our analyses reveal that >91% of herpetofauna species are currently distributed in PAs, and that this proportion will remain unaltered under future climate change. Indeed, loss of species' distributional ranges will be lower inside PAs than outside them. Therefore, the proportion of effectively protected species is predicted to increase. However, over 7.8% of species currently occur outside PAs, and large spatial conservation gaps remain, mainly across tropical and subtropical moist broadleaf forests, and across non-high-income countries. We also predict that more than 300 amphibian and 500 reptile species may go extinct under climate change over the course of the ongoing century. Our study highlights the importance of PAs in providing herpetofauna with refuge from climate change, and suggests ways to optimize PAs to better conserve biodiversity worldwide.


Assuntos
Mudança Climática , Ecossistema , Animais , Conservação dos Recursos Naturais , Répteis , Anfíbios , Biodiversidade
3.
PeerJ ; 11: e14817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36785705

RESUMO

Thoroughly documenting prey items and diet composition is crucial for understanding a predator's role in the ecosystem. In gape restricted predators, such as snakes, documenting and analyzing the type and size of the prey is important to interpret their ecological role. We describe the diet patterns of a species of venomous snake, the Terciopelo pit viper (Bothrops asper), from its Ecuadorian populations. Examining the gastrointestinal contents of museum specimens collected over an extensive area of the Pacific lowlands of Ecuador, we encountered 69 identifiable prey items from four major taxonomic groups (amphibians, centipedes, mammals, and reptiles). We evaluated the observed composition of prey to check for differences between sexes and size-classes. To complement our observations of the Terciopelo species complex throughout their distribution, we carried out a systematic literature review. Our data show an ontogenetic shift in diet, with a transition from more diverse diet in juveniles towards a mammal-specialized diet in adults, and distinct proportion of prey taxa between the sexes in the juvenile size class.


Assuntos
Bothrops , Crotalinae , Animais , Ecossistema , Equador , Serpentes , Mamíferos
4.
J Anim Ecol ; 92(2): 324-337, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36059124

RESUMO

Studying species interactions in nature often requires elaborated logistics and intense fieldwork. The difficulties in such task might hinder our ability to answer questions on how biotic interactions change with the environment. Fortunately, a workaround to this problem lies within scientific collections. For some animals, the inspection of preserved specimens can reveal the scars of past antagonistic encounters, such as predation attempts. A common defensive behaviour that leaves scars on animals is autotomy, the loss of a body appendage to escape predation. By knowing the collection site of preserved specimens, it is possible to assess the influence of organismal biology and the surrounding environment in the occurrence of autotomy. We gathered data on tail loss for 8189 preserved specimens of 33 snake and 11 amphisbaenian species to investigate biological and environmental correlates of autotomy in reptiles. We applied generalized linear mixed effect models to evaluate whether body size, sex, life-stage, habitat use, activity pattern, biome, tropicality, temperature and precipitation affect the probability of tail loss in limbless reptiles. We observed autotomy in 23.6% of examined specimens, with 18.7% of amphisbaenian and 33.4% of snake specimens showing tail loss. The probability of tail loss did not differ between snakes and amphisbaenians, but it was higher among large-sized specimens, particularly in adults and females. Chance of tail loss was higher for diurnal and arboreal species, and among specimens collected in warmer regions, but it was unaffected by biome, precipitation, and tropicality. Autotomy in limbless reptiles was affected by size-dependent factors that interplay with ontogeny and sexual dimorphism, although size-independent effects of life-stage and sex also shaped behavioural responses to predators. The increase in probability of tail loss with verticality and diurnality suggests a risk-balance mechanism between species habitat use and activity pattern. Although autotomy is more likely in warmer regions, it seems unrelated to seasonal differences in snakes and amphisbaenians activity. Our findings reveal several processes related to predator-prey interactions involving limbless reptiles, demonstrating the importance of scientific collections to unveil ecological mechanisms at different spatio-temporal scales.


Assuntos
Lagartos , Feminino , Animais , Lagartos/fisiologia , Cauda/fisiologia , Comportamento Predatório , Cicatriz , Ecossistema
5.
An Acad Bras Cienc ; 94(1): e20191254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35043846

RESUMO

Atractus badius has a long and controversial nomenclatural history due to both its antiquity and the brevity of its original description. This species was described based on two syntypes from Java. Later, a lectotype was designated and the distribution range restricted to the Guiana Shield. Although this species has been repeatedly recorded throughout Amazonia and the Andes, these records have been erroneously assigned to A. badius because of a considerable level of confusion in the literature. We found 13 additional specimens of this poorly known snake, expanding our knowledge on its morphological variability, phylogenetic relationships and distribution. In this paper, we report new localities and data on meristic, morphometric, coloration, scales micro-ornamentation, osteology and hemipenial morphology to A. badius. We also determine the phylogenetic position of A. badius as nested in a composite Guiana Shield clade. In addition, we discuss recent advances on the systematics of Atractus and comment on some 'new arrangements' with respect to previously recognized species groups and available morphological evidence. Finally, we highlight the importance of accurate voucher identification before promoting taxonomic changes or implementing nomenclatural acts derived from new phylogenetic hypotheses, and notably propose the synonymy of the recently described A. pyroni with A. roulei.


Assuntos
Genômica , Serpentes , Animais , Brasil , Osteologia , Filogenia , Serpentes/genética
6.
An Acad Bras Cienc, v. 94, n. 1, e20191254, jan. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4100

RESUMO

Atractus badius has a long and controversial nomenclatural history due to both its antiquity and the brevity of its original description. This species was described based on two syntypes from Java. Later, a lectotype was designated and the distribution range restricted to the Guiana Shield. Although this species has been repeatedly recorded throughout Amazonia and the Andes, these records have been erroneously assigned to A. badius because of a considerable level of confusion in the literature. We found 13 additional specimens of this poorly known snake, expanding our knowledge on its morphological variability, phylogenetic relationships and distribution. In this paper, we report new localities and data on meristic, morphometric, coloration, scales micro-ornamentation, osteology and hemipenial morphology to A. badius. We also determine the phylogenetic position of A. badius as nested in a composite Guiana Shield clade. In addition, we discuss recent advances on the systematics of Atractus and comment on some 'new arrangements' with respect to previously recognized species groups and available morphological evidence. Finally, we highlight the importance of accurate voucher identification before promoting taxonomic changes or implementing nomenclatural acts derived from new phylogenetic hypotheses, and notably propose the synonymy of the recently described A. pyroni with A. roulei.

7.
PeerJ ; 9: e12523, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966579

RESUMO

We describe a new species of Neotropical spiny-lizard of the genus Echinosaura from the Imbabura and Carchi Provinces on the western slopes of the Andes in northwestern Ecuador. The new species mostly resembles E. horrida. However, it can be distinguished from all congeners by having keeled enlarged dorsal scales forming a paired vertebral row, two paravertebral series of short oblique rows of projecting scales, and a pair of spine-like scales on temporal and nuchal regions. We also provide a detailed description of the osteology of the skull and pectoral girdle of the new species and present a phylogenetic hypothesis for Echinosaura based on three mitochondrial genes (12S, 16S, ND4) and one nuclear gene (c-mos).

8.
Mol Phylogenet Evol ; 164: 107267, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34293395

RESUMO

Tetrapod taxa with broad geographic distributions across the Neotropics are often composed of multiple evolutionary lineages. In this paper, we present the most complete phylogeny of Leptophis to date and assess morphology-based species limits within the broadly distributed green parrot snake Leptophis ahaetulla sensu lato, which occurs from Mexico to Argentina. Although L. ahaetulla sensu stricto, L. nigromarginatus and L. occidentalis were recovered as paraphyletic, tree topology tests failed to reject their monophyly. Monophyly of L. bocourti, L. coeruleodorsus, L. cupreus, L. depressirostris, L. marginatus, L. riveti and L. sp. nov. was strongly supported. Our phylogenetic trees support recognition of multiple species within Leptophis ahaetulla sensu lato and suggest that color evolution and the uplift of the Andes played an important role in the diversification of parrot snakes.


Assuntos
Colubridae , Papagaios , Animais , Argentina , Colubridae/genética , México , Filogenia , Serpentes/genética
9.
Zootaxa ; 4991(2): 295-317, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34186846

RESUMO

We describe a new species of Anolis lizard from the Pacific slopes of the Andes of southwestern Ecuador at elevations between 3721,000 m. The new species belongs to the Dactyloa clade and may be distinguished from other Anolis by size, external anatomy, mitochondrial DNA divergence, and dewlap color. Based on phylogenetic analyses of mitochondrial and nuclear DNA sequence data, we found that the new species is sister to A. fraseri in a clade composed primarily of large Dactyloid species. The new species is known from a protected area in southern Ecuador, Buenaventura Reserve, which suggests that at least some its populations are well protected.


Assuntos
Lagartos/classificação , Animais , DNA Mitocondrial/genética , Equador , Lagartos/anatomia & histologia , Filogenia
10.
Zookeys ; 954: 109-156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821208

RESUMO

Four new species of Pholidobolus lizards are described from poorly explored areas in the Andes of southern Ecuador based on morphological and genetic evidence. Among other morphological characters, Pholidobolus samek sp. nov. and P. condor sp. nov. differ from their congeners in having green dorsolateral stripes on head. Males of P. condor sp. nov. differ from those of P. samek sp. nov. in having reddish flanks and venter. P. dolichoderes sp. nov. is distinguished by having a long neck, with more scales between orbit and tympanum, whereas P. fascinatus sp. nov. is distinguished by lacking enlarged medial scales on collar and a conspicuous vertebral stripe. In addition, the phylogenetic position of the new species is inferred using DNA sequences of mitochondrial and nuclear genes. The phylogeny supports strongly monophyly of each of the new species and renders P. macbrydei paraphyletic and split into six subclades. Available data suggest that the new species have restricted distribution ranges (< 100 km2 each), and it is proposed that their classification be as Data Deficient or Critically Endangered species. The results reveal unexpected levels of diversity within Pholidobolus in the Andes of southern Ecuador and highlight the importance of improving scientific collections and conservation efforts in this area.

11.
Mol Phylogenet Evol ; 146: 106772, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32087331

RESUMO

The spatial distribution of genetic diversity of widely distributed Neotropical tetrapods has been an active research field during the last decade, although it has focused on lowland (mostly Amazonian) taxa. In this paper we use phylogenetic analyses to explore the diversity within two widely distributed snake species, Erythrolamprus epinephelus and E. reginae. Specifically, we focus on Andean populations of the former and lowland samples of the latter. Our results show that Erythrolamprus epinephelus is paraphyletic and support recognition of the subspecies albiventris, fraseri and lamonae as distinct species. Regarding E. reginae, our results are in conflict with recent taxonomic proposals in that (1) E. reginae is paraphyletic, and (2) E. zweifeli from Trinidad and E. reginae from Amazonian Ecuador are not reciprocally monophyletic. Finally, we recommend caution when proposing taxonomic changes based on incomplete geographic and/or character sampling of widespread Neotropical taxa.


Assuntos
Serpentes/classificação , Animais , Biodiversidade , Equador , Variação Genética , Filogenia , Serpentes/genética , América do Sul
12.
PLoS One ; 15(1): e0228043, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31978205

RESUMO

This study aims to analyze the thermal biology and climatic vulnerability of two closely related lizard species (Stenocercus festae and S. guentheri) inhabiting the Ecuadorian Andes at high altitudes. Four physiological parameters-body temperature (Tb), preferred temperature (Tpref), critical thermal maximum (CTmax), and critical thermal minimum (CTmin)-were evaluated to analyze the variation of thermophysiological traits among these populations that inhabit different environmental and altitudinal conditions. We also evaluate the availability of operative temperatures, warming tolerance, and thermal safety margin of each population to estimate their possible risks in the face of future raising temperatures. Similar to previous studies, our results suggest that some physiological traits (CTmax and Tb) are influenced by environmental heterogeneity, which brings changes on the thermoregulatory behavior. Other parameters (Tpref and CTmin), may be also influenced by phylogenetic constraints. Moreover, the fluctuating air temperature (Tair) as well as the operative temperatures (Te) showed that these lizards exploit a variety of thermal microenvironments, which may facilitate behavioral thermoregulation. Warming tolerance and thermal safety margin analyses suggest that both species find thermal refugia and remain active without reducing their performance or undergoing thermal stress within their habitats. We suggest that studies on the thermal biology of tropical Andean lizards living at high altitudes are extremely important as these environments exhibit a unique diversity of microclimates, which consequently result on particular thermophysiological adaptations.


Assuntos
Mudança Climática , Lagartos/fisiologia , Temperatura , Clima Tropical , Adaptação Fisiológica , Ar , Animais , Equador
13.
Zootaxa ; 4895(3): zootaxa.4895.3.3, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33756892

RESUMO

Leptodeira is one of the most widespread and taxonomically problematic snake taxa in the Americas. Here we describe a new species of Leptodeira from the Andes of southern Ecuador based on morphological and molecular data. The new species is geographically close and morphologically similar to L. ornata and L. larcorum, from which it can be distinguished by having smaller dorsal body blotches, a longer tail, and shorter spines on the hemipenial body. The shortest genetic distances between the new species and its congeners are 0.02 (16S), 0.05 (cytb), and 0.18 (ND4). The new species is restricted to the Jubones River Basin in southern Ecuador, an area of endemism for other reptile species. Our phylogenetic analysis based on mitochondrial and nuclear DNA sequence data also supports recognition of the names L. larcorum (restricted to Peru) for "L. septentrionalis larcorum", and L. ornata for populations of "L. s. ornata" from central and eastern Panama, western Colombia, and western Ecuador. However, some samples of "L. s. ornata" from Panama and Costa Rica, as well as the new species described herein, are not included within or more closely related to L. ornata, which is sister to the clade (L. bakeri, L. ashmeadii).


Assuntos
Serpentes , Animais , Equador , Filogenia
14.
Sci Rep ; 9(1): 5093, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911069

RESUMO

Anthropogenic climate change ranks among the major global-scale threats to modern biodiversity. Extinction risks are known to increase via the interactions between rapid climatic alterations and environmentally-sensitive species traits that fail to adapt to those changes. Accumulating evidence reveals the influence of ecophysiological, ecological and phenological factors as drivers underlying demographic collapses that lead to population extinctions. However, the extent to which life-history traits influence population responses to climate change remains largely unexplored. The emerging 'cul-de-sac hypothesis' predicts that reptilian viviparity ('live-bearing' reproduction), a 'key innovation' facilitating historical invasions of cold climates, increases extinction risks under progressively warming climates compared to oviparous reproduction - as warming advances polewards/mountainwards, historically cold-climates shrink, leading viviparous species to face demographic collapses. We present the first large-scale test of this prediction based on multiple lizard radiations and on future projections of climate-based ecological niche models. Viviparous species were found to experience stronger elevational range shifts (and potentially increased extinctions) in coming decades, compared to oviparous lizards. Therefore, our analyses support the hypothesis's fundamental prediction that elevational shifts are more severe in viviparous species, and highlight the role that life-history adaptations play in the responses of biodiversity to ongoing climate change.


Assuntos
Mudança Climática , Adaptação Fisiológica/fisiologia , Animais , Biodiversidade , Temperatura Corporal , Clima Frio , Lagartos
15.
Mol Phylogenet Evol ; 130: 315-329, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366086

RESUMO

Neotropical sipo snakes (Chironius) are large diurnal snakes with a long tail and big eyes that differ from other Neotropical snakes in having 10 or 12 dorsal scale rows at midbody. The 22 currently recognized species occur from Central America south to Uruguay and northeastern Argentina. Based on the largest geographical sampling to date including ∼90% of all species, we analyzed one nuclear and three mitochondrial genes using phylogenetic methods to (1) test the monophyly of Chironius and some of its widely distributed species; (2) identify lineages that could represent undescribed species; and (3) reconstruct ancestral distributions. Our best hypothesis placed C. grandisquamis (Chocoan Rainforest) + C. challenger (Pantepui) as sister to all other species. Based on phylogeny and geographic distribution, we identified 14 subclades as putative species within Chironius fuscus, C. multiventris (including C. foveatus and C. laurenti), C. monticola, and C. exoletus. Under current taxonomy, these species show nearly twice as much genetic diversity as other species of Chironius for ND4. Biogeographical analyses using BioGeoBEARS suggest that current distribution patterns of Chironius species across South America resulted from multiple range expansions. The MRCA of the clade C. challenger + C. grandisquamis was most likely distributed over the Pantepui region, the Andes, and the Chocoan Rainforest, whereas the remaining lineages probably evolved from an Amazonian ancestor.


Assuntos
Colubridae/classificação , Colubridae/genética , Variação Genética , Filogenia , Filogeografia , Clima Tropical , Animais , Sequência de Bases , América do Sul , Fatores de Tempo
16.
Zookeys ; (794): 135-163, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416343

RESUMO

A new species of Anolis lizard from the Andean slopes of southwestern Colombia and northwestern Ecuador, from between 1187 and 2353 m in elevation, is described. The new species can be distinguished from other Anolis in squamation, cranial osteology, hemipenial morphology, and nuclear and mitochondrial DNA. The new species is sister to Anolisaequatorialis, and it is suggested that previous records of A.aequatorialis in Colombia correspond to the new species described herein.


ResumenDescribimos una nueva especie de Anolis de las estribaciones de los Andes del suroccidente de Colombia y noroccidente de Ecuador, entre los 1187 y 2353 metros de elevación. La nueva especie puede ser distinguida de otros Anolis por caracteres de escamación, osteología craneal, morfología hemipenial, y ADN nuclear y mitocondrial. La nueva especie es hermana de A.aequatorialis, por lo que sugerimos que los registros previos de A.aequatorialis en Colombia corresponden a la nueva especie descrita en este artículo.

17.
Zookeys ; (766): 79-147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942172

RESUMO

A molecular phylogeny of the Neotropical snail-eating snakes (tribe Dipsadini) is presented including 43 (24 for the first time) of the 77 species, sampled for both nuclear and mitochondrial genes. Morphological and phylogenetic support was found for four new species of Dipsas and one of Sibon, which are described here based on their unique combination of molecular, meristic, and color pattern characteristics. Sibynomorphus is designated as a junior subjective synonym of Dipsas. Dipsas latifrontalis and D. palmeri are resurrected from the synonymy of D. peruana. Dipsas latifasciata is transferred from the synonymy of D. peruana to the synonymy of D. palmeri. A new name, D. jamespetersi, is erected for the taxon currently known as Sibynomorphus petersi. Re-descriptions of D. latifrontalis and D. peruana are presented, as well as the first photographic voucher of an adult specimen of D. latifrontalis, along with photographs of all known Ecuadorian Dipsadini species. The first country record of D. variegata in Ecuador is provided and D. oligozonata removed from the list of Peruvian herpetofauna. With these changes, the number of Dipsadini reported in Ecuador increases to 22, 18 species of Dipsas and four of Sibon.

18.
Am Nat ; 191(6): E185-E194, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29750558

RESUMO

Adaptive radiation is a widely recognized pattern of evolution wherein substantial phenotypic change accompanies rapid speciation. Adaptive radiation may be triggered by environmental opportunities resulting from dispersal to new areas or via the evolution of traits, called key innovations, that allow for invasion of new niches. Species sampling is a known source of bias in many comparative analyses, yet classic adaptive radiations have not been studied comparatively with comprehensively sampled phylogenies. In this study, we use unprecedented comprehensive phylogenetic sampling of Anolis lizard species to examine comparative evolution in this well-studied adaptive radiation. We compare adaptive radiation models within Anolis and in the Anolis clade and a potential sister lineage, the Corytophanidae. We find evidence for island (i.e., opportunity) effects and no evidence for trait (i.e., key innovation) effects causing accelerated body size evolution within Anolis. However, island effects are scale dependent: when Anolis and Corytophanidae are analyzed together, no island effect is evident. We find no evidence for an island effect on speciation rate and tenuous evidence for greater speciation rate due to trait effects. These results suggest the need for precision in treatments of classic adaptive radiations such as Anolis and further refinement of the concept of adaptive radiation.


Assuntos
Adaptação Biológica , Especiação Genética , Lagartos/genética , Animais , Filogeografia
19.
Cladistics ; 34(3): 260-291, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34645080

RESUMO

Riama is the most speciose genus of the Neotropical lizard family Gymnophthalmidae. Its more than 30 montane species occur throughout the northern Andes, the Cordillera de la Costa (CC) in Venezuela, and Trinidad. We present the most comprehensive phylogenetic analysis of Riama to date based on a total evidence (TE) approach and direct optimization of molecular and morphological evidence. Analyses use DNA sequences from four loci and 35 phenotypic characters. The dataset consists of 55 ingroup terminals representing 25 of the 30 currently recognized species of Riama plus five undescribed taxa, including an endemic species from the Sierra Nevada de Santa Marta (SNSM) in Colombia, and 66 outgroup terminals of 47 species. Analysis results in a well-supported hypothesis in which Riama is polyphyletic, with its species falling into three clades. The Tepuian Anadia mcdiarmidi nests within one clade of Riama, and the recently resurrected Pantodactylus nests within Cercosaura. Accordingly, we propose a monophyletic taxonomy that reflects historical relationships. Analysis of character evolution indicates that the presence/absence of prefrontals-a cornerstone of the early genus-level taxonomy of cercosaurines-is optimally explained as having been plesiomorphically present in the most recent common ancestor of Cercosaurinae and lost in that of the immediately less inclusive clade. Multiple independent reversals to present and subsequent returns to absent occur within this clade. To evaluate the impact of phenotypic evidence on our results, we compare our TE results with results obtained from analyses using only molecular data. Although phenotypic evidence comprises only 1.2% of the TE matrix, its inclusion alters both the topology and support values of the clades that do not differ. Finally, current phylogenetic evidence reveals a SNSM-CC-Trinidad-tepuis biogeographical link. We hypothesize that an ancient connection facilitated the exchange of species between the SNSM and the CC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...