Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(1): 1921-1929, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123145

RESUMO

Platinum (Pt) thin films are useful in applications requiring high-conductivity electrodes with excellent thermal and chemical stability. Ultrasmooth and epitaxial Pt thin films with single-crystalline domains have the added benefit of providing ideal templates for the subsequent growth of heteroepitaxial structures. Here, we grow epitaxial Pt (111) electrodes (ca. 30 nm thick) on sapphire (α-Al2O3 (0001)) substrates with pulsed laser deposition. This versatile technique allows control of the growth process and fabrication of films with carefully tailored parameters. X-ray scattering, atomic-force microscopy, and electron microscopy provide structural characterization of the films. Various gaseous atmospheres and temperatures were explored to achieve epitaxial growth of films with low roughness. A two-step (500 °C/300 °C) growth process was developed, yielding films with improved epitaxy without compromising roughness. The resulting films possess ultrasmooth interfaces (<3 Å) and high electrical conductivity (6.9 × 106 S/m). Finally, Pt films were used as current collectors and templates to grow lithium manganese oxide (LiMn2O4 (111)) epitaxial thin films, a cathode material used in Li-ion batteries. Using a solid-state ionogel electrolyte, the films were highly stable when electrochemically cycled in the 3.5-4.3 V vs Li/Li+ range.

2.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961681

RESUMO

Implantable polymeric biodegradable devices, such as biodegradable vascular stents or scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe composites of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and MoS2 nanosheets to fabricate novel X-ray visible radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS2). The composite was used as an ink with micro continuous liquid interface production (µCLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, required X-ray visibility in air and muscle tissue. Notably, MoS2 nanosheets displayed physical degradation over time in a PBS environment, indicating the potential for producing bioresorbable devices. mPDC-MoS2 is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, particularly vascular scaffolds or stents, that require non-invasive X-ray-based monitoring techniques for implantation and evaluation. This innovative composite system holds significant promise for the development of biocompatible and highly visible medical implants, potentially enhancing patient outcomes and reducing medical complications.

3.
ACS Appl Mater Interfaces ; 15(29): 35664-35673, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37434317

RESUMO

Spinel-type lithium manganese oxide (LiMn2O4) cathodes suffer from severe manganese dissolution in the electrolyte, compromising the cyclic stability of LMO-based Li-ion batteries (LIBs). In addition to causing structural and morphological deterioration to the cathode, dissolved Mn ions can migrate through the electrolyte to deposit on the anode, accelerating capacity fade. Here, we examine single-crystal epitaxial LiMn2O4 (111) thin-films using synchrotron in situ X-ray diffraction and reflectivity to study the structural and interfacial evolution during cycling. Cyclic voltammetry is performed in a wide range (2.5-4.3 V vs Li/Li+) to promote Mn3+ formation, which enhances dissolution, for two different electrolyte systems: an imidazolium ionic liquid containing lithium bis-(trifluoromethylsulfonyl)imide (LiTFSI) and a conventional carbonate liquid electrolyte containing lithium hexafluorophosphate (LiPF6). We find exceptional stability in this voltage range for the ionic liquid electrolyte compared to the conventional electrolyte, which is attributed to the absence of Mn dissolution in the ionic liquid. X-ray reflectivity shows a negligible loss of cathode material for the films cycled in the ionic liquid electrolyte, further confirmed by inductively coupled plasma mass spectrometry and transmission electron microscopy. Conversely, a substantial loss of Mn is found when the film is cycled in the conventional electrolyte. These findings show the significant advantages of ionic liquids in suppressing Mn dissolution in LiMn2O4 LIB cathodes.

4.
Adv Mater ; 34(3): e2106402, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34731506

RESUMO

LiNiO2 (LNO) is a promising cathode material for next-generation Li-ion batteries due to its exceptionally high capacity and cobalt-free composition that enables more sustainable and ethical large-scale manufacturing. However, its poor cycle life at high operating voltages over 4.1 V impedes its practical use, thus motivating efforts to elucidate and mitigate LiNiO2 degradation mechanisms at high states of charge. Here, a multiscale exploration of high-voltage degradation cascades associated with oxygen stacking chemistry in cobalt-free LiNiO2 , is presented. Lattice oxygen loss is found to play a critical role in the local O3-O1 stacking transition at high states of charge, which subsequently leads to Ni-ion migration and irreversible stacking faults during cycling. This undesirable atomic-scale structural evolution accelerates microscale electrochemical creep, cracking, and even bending of layers, ultimately resulting in macroscopic mechanical degradation of LNO particles. By employing a graphene-based hermetic surface coating, oxygen loss is attenuated in LNO at high states of charge, which suppresses the initiation of the degradation cascade and thus substantially improves the high-voltage capacity retention of LNO. Overall, this study provides mechanistic insight into the high-voltage degradation of LNO, which will inform ongoing efforts to employ cobalt-free cathodes in Li-ion battery technology.

5.
Nat Mater ; 20(8): 1142-1148, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33737728

RESUMO

As the features of microprocessors are miniaturized, low-dielectric-constant (low-k) materials are necessary to limit electronic crosstalk, charge build-up, and signal propagation delay. However, all known low-k dielectrics exhibit low thermal conductivities, which complicate heat dissipation in high-power-density chips. Two-dimensional (2D) covalent organic frameworks (COFs) combine immense permanent porosities, which lead to low dielectric permittivities, and periodic layered structures, which grant relatively high thermal conductivities. However, conventional synthetic routes produce 2D COFs that are unsuitable for the evaluation of these properties and integration into devices. Here, we report the fabrication of high-quality COF thin films, which enable thermoreflectance and impedance spectroscopy measurements. These measurements reveal that 2D COFs have high thermal conductivities (1 W m-1 K-1) with ultra-low dielectric permittivities (k = 1.6). These results show that oriented, layered 2D polymers are promising next-generation dielectric layers and that these molecularly precise materials offer tunable combinations of useful properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...