Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518079

RESUMO

The recombinant polyhistidine-tagged hemoglobin I ((His)6-rHbI) from the bivalve Lucina pectinata is an ideal biocomponent for a hydrogen sulfide (H2S) biosensor due to its high affinity for H2S. In this work, we immobilized (His)6-rHbI over a surface modified with gold nanoparticles functionalized with 3-mercaptopropionic acid complexed with nickel ion. The attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) analysis of the modified-gold electrode displays amide I and amide II bands characteristic of a primarily α-helix structure verifying the presence of (His)6-rHbI on the electrode surface. Also, X-ray photoelectron spectroscopy (XPS) results show a new peak after protein interaction corresponding to nitrogen and a calculated overlayer thickness of 5.3 nm. The functionality of the immobilized hemoprotein was established by direct current potential amperometry, using H2S as the analyte, validating its activity after immobilization. The current response to H2S concentrations was monitored over time giving a linear relationship from 30 to 700 nM with a corresponding sensitivity of 3.22 × 10-3 nA/nM. These results confirm that the analyzed gold nanostructured platform provides an efficient and strong link for polyhistidine-tag protein immobilization over gold and glassy carbon surfaces for a future biosensors development.


Assuntos
Técnicas Biossensoriais , Hemoglobinas Anormais/química , Sulfeto de Hidrogênio/isolamento & purificação , Proteínas Recombinantes/química , Animais , Bivalves/química , Ouro/química , Histidina/química , Sulfeto de Hidrogênio/química , Proteínas Imobilizadas/química , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
ACS Omega ; 2(12): 9021-9032, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-29302632

RESUMO

The recombinant HbI was fused with a poly-Lys tag ((Lys)6-tagged rHbI) for specific-site covalent immobilization on two carbon nanotube transducer surfaces, i.e., powder and vertically aligned carbon nanotubes. The immobilization was achieved by following two steps: (1) generation of amine-reactive ester from the carboxylic acid groups of the surfaces and (2) coupling these groups with the amine groups of the Lys-tag. We analyzed the immobilization process using different conditions and techniques to differentiate protein covalent attachment from physical adsorption. Fourier transform infrared microspectroscopy data showed a 14 cm-1 displacement of the protein's amide I and amide II peaks to lower the frequency after immobilization. This result indicates a covalent attachment of the protein to the surface. Differences in the morphology of the carbon substrate with and without (Lys)6-tagged rHbI confirmed protein immobilization, as observed by transmission electron microscopy. The electrochemical studies, which were performed to evaluate the redox center of the immobilized protein, show a confinement suitable for an efficient electron transfer system. More importantly, the electrochemical studies allowed determination of a redox potential for the new (Lys)6-tagged rHbI. The data show that the protein is electrochemically active and retains its biological activity toward H2S.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...