Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1306600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38299096

RESUMO

Environmental pollution nowadays has not only a direct correlation with human health changes but a direct social impact. Epidemiological studies have evidenced the increased damage to human health on a daily basis because of damage to the ecological niche. Rapid urban growth and industrialized societies importantly compromise air quality, which can be assessed by a notable accumulation of air pollutants in both the gas and the particle phases. Of them, particulate matter (PM) represents a highly complex mixture of organic and inorganic compounds of the most variable size, composition, and origin. PM being one of the most complex environmental pollutants, its accumulation also varies in a temporal and spatial manner, which challenges current analytical techniques used to investigate PM interactions. Nevertheless, the characterization of the chemical composition of PM is a reliable indicator of the composition of the atmosphere, the quality of breathed air in urbanized societies, industrial zones and consequently gives support for pertinent measures to avoid serious health damage. Epigenomic damage is one of the most promising biological mechanisms of air pollution-derived carcinogenesis. Therefore, this review aims to highlight the implication of PM exposure in diverse molecular mechanisms driving human diseases by altered epigenetic regulation. The presented findings in the context of pan-organic cancer, fibrosis, neurodegeneration and metabolic diseases may provide valuable insights into the toxicity effects of PM components at the epigenomic level and may serve as biomarkers of early detection for novel targeted therapies.

2.
J Diabetes Res ; 2022: 9321445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242881

RESUMO

Obesity and dyslipidemias are both signs of metabolic syndrome, usually associated with ventricular arrhythmias. Here, we tried to identify cardiac electrical alteration and biomarkers in nonobese rats with metabolic syndrome (MetS), and these findings might lead to more lethal arrhythmias than obese animals. The MetS model was developed in Wistar rats with high-sucrose diet (20%), and after twenty-eight weeks were obtained two subgroups: obese (OMetS) and nonobese (NOMetS). The electrocardiogram was used to measure the ventricular arrhythmias and changes in the heart rate variability. Also, we measured ventricular hypertrophy and its relationship with electrical activity alterations of both ventricles, using micro-electrode and voltage clamp techniques. Also, we observed alterations in the contraction force of ventricles where a transducer was used to record mechanical and electrical papillary muscle, simultaneously. Despite both subgroups presenting long QT syndrome (0.66 ± 0.05 and 0.66 ± 0.07 ms with respect to the control 0.55 ± 0.1 ms), the changes in the heart rate variability were present only in OMetS, while the NOMetS subgroup presented changes in QT interval variability (NOMetS SD = 1.8, SD2 = 2.8; SD1/SD2 = 0.75). Also, the NOMetS revealed tachycardia (10%; p < 0.05) with changes in action potential duration (63% in the right papillary and 50% in the left papillary) in the ventricular papillary which are correlated with certain alterations in the potassium currents and the force of contraction. The OMetS showed an increase in action potential duration and the force of contraction in both ventricles, which are explained as bradycardia. Our results revealed lethal arrhythmias in both MetS subgroups, irrespectively of the presence of obesity. Consequently, the NOMetS showed mechanical-electrical alterations regarding ventricle hypertrophy that should be at the NOMetS, leading to an increase of CV mortality.


Assuntos
Síndrome Metabólica/complicações , Obesidade/complicações , Disfunção Ventricular/fisiopatologia , Animais , Modelos Animais de Doenças , Síndrome Metabólica/fisiopatologia , Obesidade/fisiopatologia , Ratos , Ratos Wistar/metabolismo , Disfunção Ventricular/etiologia
3.
J Diabetes Res ; 2019: 5157024, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31211146

RESUMO

Heart rate variability (HRV) is highly influenced by the Autonomic Nervous System (ANS). Several illnesses have been associated with changes in the ANS, thus altering the pattern of HRV. However, the variability of the heart rhythm is originated within the Sinus Atrial Node (SAN) which has its own variability. Still, although both oscillators produce HRV, the influence of the SAN on HRV has not yet been exhaustively studied. On the other hand, the complications of diabetes mellitus (DM), for instance, nephropathy, retinopathy, and neuropathy, increase cardiovascular morbidity and mortality. Traditionally, these complications are diagnosed only when the patient is already suffering from the negative symptoms these complications implicate. Consequently, it is of paramount importance to develop new techniques for early diagnosis prior to any deterioration on healthy patients. HRV has been proved to be a valuable, noninvasive clinical evidence for evaluating diseases and even for describing aging and behavior. In this study, several ECGs were recorded and their RR and PP intervals were analyzed to detect the interpotential interval (ii) of the SAN. Additionally, HRV reduction was quantified to identify alterations in the nervous system within the nodal tissue via measuring the SD1/SD2 ratio in a Poincaré plot. With 15 years of DM development, the data showed an age-dependent increase in HRV due to the axon retraction of ANS neurons from its effectors. In addition, these alterations modify the heart rhythm-producing fatal arrhythmias. Therefore, it is possible to avoid the consequences of DM identifying alterations in SAN previous to its symptomatic appearance. This could be used as an early diagnosis indicator.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Biomarcadores , Diabetes Mellitus Experimental/fisiopatologia , Frequência Cardíaca , Adolescente , Adulto , Animais , Modelos Animais de Doenças , Eletrocardiografia , Humanos , Masculino , Camundongos , Oscilometria , Nó Sinoatrial , Adulto Jovem
4.
J Diabetes Res ; 2016: 8483537, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27191000

RESUMO

According to the American Diabetes Association (ADA), the side effects of diabetes mellitus have recently increased the global health expenditure each year. Of these, the early diagnostic can contribute to the decrease on renal, cardiovascular, and nervous systems complications. However, the diagnostic criteria, which are commonly used, do not suggest the diabetes progress in the patient. In this study, the streptozotocin model in mice (cDM) was used as early diagnostic criterion to reduce the side effects related to the illness. The results showed some clinical signs similarly to five-year diabetes progress without renal injury, neuropathies, and cardiac neuropathy autonomic in the cDM-model. On the other hand, the electrocardiogram was used to determine alterations in heart rate and heart rate variability (HRV), using the Poincaré plot to quantify the HRV decrease in the cDM-model. Additionally, the SD1/SD2 ratio and ventricular arrhythmias showed increase without side effects of diabetes. Therefore, the use of HRV as an early biomarker contributes to evaluating diabetes mellitus complications from the diagnostic.


Assuntos
Complicações do Diabetes/diagnóstico , Diabetes Mellitus Experimental/fisiopatologia , Progressão da Doença , Frequência Cardíaca/fisiologia , Animais , Biomarcadores , Complicações do Diabetes/fisiopatologia , Eletrocardiografia , Masculino , Camundongos
5.
PLoS One ; 10(7): e0134564, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26230503

RESUMO

Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF). As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i) in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 µM) and Ca2+ signals were recorded by microfluorimetric techniques. Beractant causes a concentration-dependent increase in [Ca2+]i with a EC50 of 0.82 µg/ml. The application of beractant, at a concentration of 500 µg/ml, which has been shown to exert an apoptotic effect in human fibroblasts, elicited different patterns of Ca2+ signals in NHLF: a) a single Ca2+ spike which could be followed by b) Ca2+ oscillations, c) a sustained Ca2+ plateau or d) a sustained plateau overlapped by Ca2+ oscillations. The amplitude and pattern of Ca2+ transients evoked by beractant were dependent on the resting [Ca2+]i. Pharmacological manipulation revealed that beractant activates a Ca2+ signal through Ca2+ release from intracellular stores mediated by phospholipase Cß (PLCß), Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs) and Ca2+ influx via a store-operated pathway. Moreover, beractant-induced Ca2+ release was abolished by preventing membrane depolarization upon removal of extracellular Na+ and Ca2+. Finally, the inhibition of store-operated channels prevented beractant-induced NHLF apoptosis and downregulation of α1(I) procollagen expression. Therefore, beractant utilizes SOCE to exert its pro-apoptotic and antifibrinogenic effect on NHLF.


Assuntos
Produtos Biológicos/farmacologia , Cálcio/metabolismo , Citosol/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Surfactantes Pulmonares/farmacologia , Citosol/metabolismo , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo
6.
PLoS One ; 8(11): e76534, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24250786

RESUMO

In the last ten years, the incidences of metabolic syndrome and supraventricular arrhythmias have greatly increased. The metabolic syndrome is a cluster of alterations, which include obesity, hypertension, hypertriglyceridemia, glucose intolerance and insulin resistance, that increase the risk of developing, among others, atrial and nodal arrhythmias. The aim of this study is to demonstrate that metabolic syndrome induces electrical remodeling of the sinus node and produces arrhythmias. We induced metabolic syndrome in 2-month-old male Wistar rats by administering 20% sucrose in the drinking water. Eight weeks later, the rats were anesthetized and the electrocardiogram was recorded, revealing the presence of arrhythmias only in treated rats. Using conventional microelectrode and voltage clamp techniques, we analyzed the electrical activity of the sinoatrial node. We observed that in the sinoatrial node of "metabolic syndrome rats", compared to controls, the spontaneous firing of all cells decreased, while the slope of the diastolic depolarization increased only in latent pacemaker cells. Accordingly, the pacemaker currents If and Ist increased. Furthermore, histological analysis showed a large amount of fat surrounding nodal cardiomyocytes and a rise in the sympathetic innervation. Finally, Poincaré plot denoted irregularity in the R-R and P-P ECG intervals, in agreement with the variability of nodal firing potential recorded in metabolic syndrome rats. We conclude that metabolic syndrome produces a dysfunction SA node by disrupting normal architecture and the electrical activity, which could explain the onset of arrhythmias in rats.


Assuntos
Arritmias Cardíacas/fisiopatologia , Remodelamento Atrial/fisiologia , Síndrome Metabólica/fisiopatologia , Nó Sinoatrial/fisiologia , Animais , Arritmias Cardíacas/etiologia , Eletrocardiografia , Humanos , Masculino , Síndrome Metabólica/complicações , Técnicas de Patch-Clamp , Ratos
7.
J Vasc Res ; 49(1): 65-76, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21997119

RESUMO

Endothelial injury is the primary event that leads to a variety of severe vascular disorders. Mechanical injury elicits a Ca(2+) response in the endothelium of excised rat aorta, which comprises an initial Ca(2+) release from inositol-1,4,5-trisphosphate (InsP(3))-sensitive stores followed by a long-lasting decay phase due to Ca(2+) entry through uncoupled connexons. The Ca(2+) signal may also adopt an oscillatory pattern, the molecular underpinnings of which are unclear. In the light of the role played by Ca(2+) spiking in tissue regeneration, this study aimed to unveil the mechanisms underlying injury-induced Ca(2+) oscillations. The latter reversibly ceased upon removal of extracellular Ca(2+) or addition of the gap junction blockers heptanol, 18 α,ß-glycyrrhetinic acid, La(3+) and Ni(2+), but were insensitive to BTP-2 and SKF 96365. The spiking response was abolished by inhibiting the Ca(2+) entry mode of the Na(+)/Ca(2+) exchanger (NCX). The InsP(3)-producing agonist ATP resumed Ca(2+) oscillations in silent cells, while the phospholipase C inhibitor U73122 suppressed them. Injury-induced Ca(2+) transients were prevented by the sarcoplasmic-endoplasmic reticulum calcium ATPase (SERCA) blockers thapsigargin and cyclopiazonic acid, while they were unaffected by suramin and genistein. These data show for the first time that the coordinated interplay between NCX-mediated Ca(2+) entry and InsP(3)-dependent Ca(2+) release contributes to injury-induced intracellular Ca(2+) concentration oscillations.


Assuntos
Aorta/metabolismo , Sinalização do Cálcio , Endotélio Vascular/lesões , Anilidas/farmacologia , Animais , Cálcio/metabolismo , Endotélio Vascular/metabolismo , Junções Comunicantes/fisiologia , Heptanol/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Ratos , Ratos Wistar , Receptores Purinérgicos P2Y/fisiologia , Trocador de Sódio e Cálcio/fisiologia , Tiadiazóis/farmacologia
8.
Biochem Biophys Res Commun ; 395(1): 126-30, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20353753

RESUMO

The role of Na(+)-Ca(2+) exchanger (NCX) in vascular endothelium is still matter of debate. Depending on both the endothelial cell (EC) type and the extracellular ligand, NCX has been shown to operate in either the forward (Ca(2+) out)- or the reverse (Ca(2+) in)-mode. In particular, acetylcholine (Ach) has been shown to promote Ca(2+) inflow in the intact endothelium of excised rat aorta. Herein, we assessed the involvement of NCX into the Ca(2+) signals elicited by ATP in such preparation. Removal of extracellular Na(+) (0Na(+)) causes the NCX to switch into the reverse-mode and induced an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), which disappeared in the absence of extracellular Ca(2+), and in the presence of benzamil, which blocks both modes of NCX, and KB-R 7943, a selective inhibitor of the reverse-mode. ATP induced a transient Ca(2+) signal, whose decay was significantly prolonged by 0Na(+), benzamil, DCB, and monensin while it was unaffected by KB-R 7943. Notably, lowering extracellular Na(+) concentration increased the sensibility to lower doses of ATP. These date suggest that, unlike Ach-stimulated ECs, NCX promotes Ca(2+) extrusion when the stimulus is provided by ATP in intact endothelium of rat aorta. These data show that, within the same preparation, NCX operates in both modes, depending on the chemical nature of the extracellular stimulus.


Assuntos
Aorta/metabolismo , Cálcio/metabolismo , Endotélio Vascular/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Trifosfato de Adenosina/farmacologia , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Aorta/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Técnicas In Vitro , Ratos , Ratos Wistar , Trocador de Sódio e Cálcio/antagonistas & inibidores , Tioureia/análogos & derivados , Tioureia/farmacologia
9.
Pflugers Arch ; 459(3): 345-55, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19763605

RESUMO

4-aminopyridine (4-AP) is commonly used to block the transient outward potassium current, I(to), in cardiac and noncardiac tissues. In the present work, we found that 4-AP inhibited the rapid component of the delayed rectifier potassium current, I(Kr), in rabbit-isolated sinoatrial node myocytes by 25% (1 mM) and 51% (5 mM) and inhibited the slow component of the delayed rectifier potassium current, I(Ks), in cat- isolated sinoatrial node myocytes by 39% (1 mM) and 62% (5 mM). In cat- and rabbit-isolated sinoatrial node myocytes, 4-AP activated muscarinic receptors in a voltage-dependent manner to increase the acetylcholine-activated potassium current, I(KACh). In multicellular preparations of the central region of the sinoatrial node from nonreserpinized rabbits, 4-AP produced an increase in action potential overshoot, frequency, and rate of diastolic depolarization. In the presence of the beta-adrenergic antagonist propranolol, 4-AP produced a marked increase in duration and a marked decrease in maximum diastolic potential and eventually, cessation of the spontaneous activity in preparations from the sinoatrial central region. In multicellular preparations from reserpinized rabbits, 4-AP produced similar effects to those observed in the presence of propranolol. We conclude that 4-AP inhibits multiple cardiac K(+) currents, including I(to), I(Kr), and I(Ks), and that these activities mask I(KACh) activation. In addition, in multicellular preparations, 4-AP produces neurotransmitter release from the autonomic nerve terminals. These multiple effects need to be considered when using 4-AP as a "specific" I(to) blocker.


Assuntos
4-Aminopiridina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Nó Sinoatrial/citologia , Animais , Antiarrítmicos/farmacologia , Atropina/farmacologia , Venenos de Abelha/farmacologia , Gatos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Coelhos , Nó Sinoatrial/efeitos dos fármacos
10.
J Cardiovasc Pharmacol ; 47(5): 656-62, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16775504

RESUMO

The D3-dopaminergic agonist (+/-) 7-hydroxy-dipropylaminotetralin (7-OH-DPAT) prolonged cycle length and action potential duration, depolarized maximum diastolic potential, and reduced the upstroke velocity of the action potential of rabbit sinoatrial node cells. These effects were not mediated by D3-dopaminergic receptors. In cat Purkinje fibers, the drug increased action potential duration. In voltage-clamped cat ventricular myocytes, 7-OH-DPAT blocked the rapid component of the delayed rectifier potassium current, IKr. This effect was corroborated in experiments studying the effect of the drug on human Ether-a-go-go-related Gene channels expressed in Xenopus oocytes and in HEK293 cells. We conclude that the direct electrophysiologic effects of 7-OH-DPAT on cardiac tissues are caused by the blockade of the rapid component of the delayed rectifier potassium current, IKr.


Assuntos
Agonistas de Dopamina/farmacologia , Receptores de Dopamina D3/agonistas , Tetra-Hidronaftalenos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Gatos , Linhagem Celular , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/fisiologia , Coração/efeitos dos fármacos , Coração/fisiologia , Humanos , Técnicas In Vitro , Síndrome do QT Longo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Ramos Subendocárdicos/efeitos dos fármacos , Ramos Subendocárdicos/fisiologia , Coelhos , Nó Sinoatrial/efeitos dos fármacos , Nó Sinoatrial/fisiologia , Xenopus
11.
Life Sci ; 79(9): 883-9, 2006 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-16616210

RESUMO

Diabetes Mellitus (DM) can produce an increase in the cardiac action potential duration and QT interval that can be associated with sudden death. These cardiac effects are due to a region-specific decrease in repolarizing outward K(+) currents. Some authors have suggested that the proarrhythmic effects of diabetes can be due to diabetes-induced hypothyroidism. Thus, we have examined the effect of the thyroid hormone analog diiodothyropropionic acid (DITPA) on calcium-independent outward potassium currents in ventricular myocytes from diabetic rats. Sustained (I(ss)) and fast transient outward (I(tof)) K(+) currents were recorded using the whole-cell configuration of the patch-clamp technique. Myocytes were enzymatically isolated from the free wall of the right ventricle, and the epicardial and endocardial layers of the left ventricle of healthy, diabetic and DITPA-treated diabetic rats. Circulating thyroid hormones were measured by electrochemiluminescence. DITPA-treatment of diabetic rats restored I(tof) and I(ss) current densities in cardiac myocytes from the three regions studied, but did not alter current densities in myocytes of control rats. T(3) and T(4) levels were reduced by diabetes, and DITPA-treatment increased circulating T(3) levels. T(3)-treatment of diabetic rats also restored current densities to control values. However, direct incubation of diabetic myocytes with DITPA did not restore current densities. In summary, DITPA-treatment of diabetic rats restored the potassium current (I(tof) and I(ss)) densities in myocytes from all ventricular regions.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Di-Iodotironinas/farmacologia , Miócitos Cardíacos/metabolismo , Canais de Potássio/efeitos dos fármacos , Propionatos/farmacologia , Animais , Glicemia/metabolismo , Separação Celular , Interpretação Estatística de Dados , Hipotireoidismo/metabolismo , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Testes de Função Tireóidea , Hormônios Tireóideos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...