Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 88(12): e202300413, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796663

RESUMO

5-hydroxymethylfurfural represents a key chemical in the drive towards a sustainable circular economy within the chemical industry. The final step in 5-hydroxymethylfurfural production is the acid catalysed dehydration of fructose, for which supported organoacids are excellent potential catalyst candidates. Here we report a range of solid acid catalysis based on sulphonic acid grafted onto different porous silica nanosphere architectures, as confirmed by TEM, N2 porosimetry, XPS and ATR-IR. All four catalysts display enhanced active site normalised activity and productivity, relative to alternative silica supported equivalent systems in the literature, with in-pore diffusion of both substrate and product key to both performance and humin formation pathway. An increase in-pore diffusion coefficient of 5-hydroxymethylfurfural within wormlike and stellate structures results in optimal productivity. In contrast, poor diffusion within a raspberry-like morphology decreases rates of 5-hydroxymethylfurfural production and increases its consumption within humin formation.

2.
R Soc Open Sci ; 8(10): 211086, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34703623

RESUMO

Hierarchical zeolites have the potential to provide a breakthrough in transport limitation, which hinders pristine microporous zeolites and thus may broaden their range of applications. We have explored the use of Pd-doped hierarchical ZSM-5 zeolites for aerobic selective oxidation (selox) of cinnamyl alcohol and benzyl alcohol to their corresponding aldehydes. Hierarchical ZSM-5 with differing acidity (H-form and Na-form) were employed and compared with two microporous ZSM-5 equivalents. Characterization of the four catalysts by X-ray diffraction, nitrogen porosimetry, NH3 temperature-programmed desorption, CO chemisorption, high-resolution scanning transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray absorption spectroscopy allowed investigation of their porosity, acidity, as well as Pd active sites. The incorporation of complementary mesoporosity, within the hierarchical zeolites, enhances both active site dispersion and PdO active site generation. Likewise, alcohol conversion was also improved with the presence of secondary mesoporosity, while strong Brønsted acidity, present solely within the H-form systems, negatively impacted overall selectivity through undesirable self-etherification. Therefore, tuning support porosity and acidity alongside active site dispersion is paramount for optimal aldehyde production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...