Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 324(4): C807-C820, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779664

RESUMO

We examined the impact of statins on protein kinase D (PKD) activation by G protein-coupled receptor (GPCR) agonists. Treatment of intestinal IEC-18 cells with cerivastatin inhibited PKD autophosphorylation at Ser916 induced by angiotensin II (ANG II) or vasopressin in a dose-dependent manner with half-maximal inhibition at 0.2 µM. Cerivastatin treatment inhibited PKD activation stimulated by these agonists for different times (5-60 min) and blunted HDAC5 phosphorylation, a substrate of PKD. Other lipophilic statins, including simvastatin, atorvastatin, and fluvastatin also prevented PKD activation in a dose-dependent manner. Using IEC-18 cell lines expressing PKD1 tagged with EGFP (enhanced green fluorescent protein), cerivastatin or simvastatin blocked GPCR-mediated PKD1-EGFP translocation to the plasma membrane and its subsequent nuclear accumulation. Similar results were obtained in IEC-18 cells expressing PKD3-EGFP. Mechanistically, statins inhibited agonist-dependent PKD activation rather than acting directly on PKD catalytic activity since exposure to cerivastatin or simvastatin did not impair PKD autophosphorylation or PKD1-EGFP membrane translocation in response to phorbol dibutyrate, which bypasses GPCRs and directly stimulates PKC and PKD. Furthermore, cerivastatin did not inhibit recombinant PKD activity determined via an in vitro kinase assay. Using enteroids generated from intestinal crypt-derived epithelial cells from PKD1 transgenic mice as a model of intestinal regeneration, we show that statins oppose PKD1-mediated increase in enteroid area, complexity (number of crypt-like buds), and DNA synthesis. Our results revealed a previously unappreciated inhibitory effect of statins on receptor-mediated PKD activation and in opposing the growth-promoting effects of PKD1 on intestinal epithelial cells.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Camundongos , Animais , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Proteína Quinase C/metabolismo , Fosforilação , Receptores Acoplados a Proteínas G/genética , Camundongos Transgênicos , Sinvastatina/farmacologia
2.
Front Microbiol ; 10: 2432, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708902

RESUMO

Phosphate metabolism was studied to determine whether polyphosphate (polyP) pools play a role in the enhanced resistance against Cd2+ and metal-removal capacity of Cd2+-preadapted (CdPA) Methanosarcina acetivorans. Polyphosphate kinase (PPK), exopolyphosphatase (PPX) and phosphate transporter transcript levels and their activities increased in CdPA cells compared to control (Cnt) cells. K+ inhibited recombinant Ma-PPK and activated Ma-PPX, whereas divalent cations activated both enzymes. Metal-binding polyP and thiol-containing molecule contents, Cd2+-removal, and biofilm synthesis were significantly higher in CdPA cells >Cnt cells plus a single addition of Cd2+>Cnt cells. Also, CdPA cells showed a higher number of cadmium, sulfur, and phosphorus enriched-acidocalcisomes than control cells. Biochemical and physiological phenotype exhibited by CdPA cells returned to that of Cnt cells when cultured without Cd2+. Furthermore, no differences in the sequenced genomes upstream and downstream of the genes involved in Cd2+ resistance were found between CdPA and Cnt cells, suggesting phenotype loss rather than genome mutations induced by chronic Cd2+-exposure. Instead, a metabolic adaptation induced by Cd2+ stress was apparent. The dynamic ability of M. acetivorans to change its metabolism, depending on the environmental conditions, may be advantageous to remove cadmium in nature and biodigesters.

3.
Cell Signal ; 24(4): 914-21, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22227248

RESUMO

Protein kinase D (PKD) is activated within cells by stimulation of multiple G protein coupled receptors (GPCR). Earlier studies demonstrated a role for PKC to mediate rapid activation loop phosphorylation-dependent PKD activation. Subsequently, a novel PKC-independent pathway in response to Gαq-coupled GPCR stimulation was identified. Here, we examined further the specificity and PKC-dependence of PKD activation using COS-7 cells cotransfected with different Gq-family Gα and stimulated with aluminum fluoride (AlF4⁻). PKD activation was measured by kinase assays, and Western blot analysis of activation loop sites Ser744, a prominent and rapid PKC transphosphorylation site, and Ser748, a site autophosphorylated in the absence of PKC signaling. Treatment with AlF4⁻ potently induced PKD activation and Ser744 and Ser748 phosphorylation, in the presence of cotransfected Gαq, Gα11, Gα14 or Gα15. These treatments achieved PKD activation loop phosphorylation similar to the maximal levels obtained by stimulation with the phorbol ester, PDBu. Preincubation with the PKC inhibitor GF1 potently blocked Gα11-, Gα14-, and Gα15-mediated enhancement of Ser748 phosphorylation induced by AlF4⁻, and largely abolished Ser744 phosphorylation. In contrast, Ser748 phosphorylation was almost completely intact, and Ser744 phosphorylation was significantly activated in cells cotransfected with Gαq. Importantly, the differential Ser748 phosphorylation was also promoted by treatment of Swiss 3T3 cells with Pasteurella multocida toxin, a selective activator of Gαq but not Gα11. Taken together, our results suggest that Gαq, but not the closely related Gα11, promotes PKD activation in response to GPCR ligands in a unique manner leading to PKD autophosphorylation at Ser748.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Proteína Quinase C/metabolismo , Serina/metabolismo , Transdução de Sinais/genética , Células 3T3 , Compostos de Alumínio/farmacologia , Animais , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Western Blotting , Células COS , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Fluoretos/farmacologia , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Camundongos , Ésteres de Forbol/farmacologia , Fosforilação/efeitos dos fármacos , Plasmídeos , Inibidores de Proteases/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transfecção
4.
Int J Biochem Cell Biol ; 42(10): 1744-51, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20654728

RESUMO

It has been assumed that oxidative phosphorylation (OxPhos) in solid tumors is severely reduced due to cytochrome c oxidase substrate restriction, although the measured extracellular oxygen concentration in hypoxic areas seems not limiting for this activity. To identify alternative hypoxia-induced OxPhos depressing mechanisms, an integral analysis of transcription, translation, enzyme activities and pathway fluxes was performed on glycolysis and OxPhos in HeLa and MCF-7 carcinomas. In both neoplasias exposed to hypoxia, an early transcriptional response was observed after 8h (two times increased glycolysis-related mRNA synthesis promoted by increased HIF-1alpha levels). However, major metabolic remodeling was observed only after 24h hypoxia: increased glycolytic protein content (1-5-times), enzyme activities (2-times) and fluxes (4-6-times). Interestingly, in MCF-7 cells, 24h hypoxia decreased OxPhos flux (4-6-fold), and 2-oxoglutarate dehydrogenase and glutaminase activities (3-fold), with no changes in respiratory complexes I and IV activities. In contrast, 24h hypoxia did not significantly affect HeLa OxPhos flux; neither mitochondria related mRNAs, protein contents or enzyme activities, although the enhanced glycolysis became the main ATP supplier. Thus, prolonged hypoxia (a) targeted some mitochondrial enzymes in MCF-7 but not in HeLa cells, and (b) induced a transition from mitochondrial towards a glycolytic-dependent energy metabolism in both MCF-7 and HeLa carcinomas.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma/metabolismo , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias da Mama/patologia , Carcinoma/patologia , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Feminino , Glutaminase/genética , Glutaminase/metabolismo , Glicólise , Células HeLa , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Fosforilação Oxidativa , Neoplasias do Colo do Útero/patologia
5.
Arch Microbiol ; 191(1): 47-54, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18762912

RESUMO

Living organisms are subject to stress, and among these stressors, heavy metals exposure triggers accumulation of sulfur metabolites. Among these metabolites, glutathione and phytochelatins are found in several organisms, such as Euglena gracilis. Pre-exposing E. gracilis to low concentrations of Hg2+ generates a population with resistance to even 0.2 mM Cd2+, and this resistance relies partly on phytochelatins. p38 MAPK is stimulated by stress and is involved in apoptotic as well as survival mechanisms. In this study, we explored its participation in heavy metal-induced stress and its possible role in sulfur metabolite accumulation. We found that about 51% of the E. gracilis pretreated with Hg2+ becomes resistant to Cd2+ and proliferates despite the presence of this metal. The accumulation of the sulfur metabolites gamma-glu-cys, glutathione and phytochelatin 2 displayed cyclic patterns that were disturbed by a challenge with Cd2+. We observed a p38 MAPK-like activity that was stimulated by acute or chronic heavy metal exposure, and its inhibition by SB203580 slightly diminished the accumulation of sulfur compounds. p38 MAPK inhibition also affected basal levels of glutathione in either pretreated or control cells. Thus, it appears that p38 MAPK mediates redox stress component of the signal pathway induced by heavy metals.


Assuntos
Euglena gracilis/metabolismo , Metais Pesados/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais
6.
Arch Microbiol ; 184(2): 83-92, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16177892

RESUMO

To determine the onset of the Cd2+-hyperaccumulating phenotype in Euglena gracilis, induced by Hg2+ pretreatment (Avilés et al. in Arch Microbiol 180:1-10, 2003), the changes in cellular growth, Cd2+ uptake, and intracellular contents of sulfide, cysteine, gamma-glutamylcysteine, glutathione and phytochelatins during the progress of the culture were analyzed. In cells exposed to 0.2 mM CdCl2, the Cd2+-hyperaccumulating phenotype was apparent only after 48 h of culture, as indicated by the significant increase in cell growth and higher internal contents of sulfide and thiol-compounds, along with a higher gamma-glutamylcysteine synthetase activity. However, the stiochiometry of thiol-compounds/Cd2+ accumulated was similar for both control and Hg2+-pretreated cells. Moreover, the value for this ratio was 2.1 or lower after 48-h culture, which does not suffice to fully inactivate Cd2+. It is concluded that, although the glutathione and phytochelatin synthesis pathway is involved in the development of the Cd2+-hyperaccumulating phenotype in E. gracilis, apparently other pathways and sub-cellular mechanisms are also involved. These may be an increase in other Cd2+ chelating molecules such as di- and tricarboxylic acids, phosphate and polyphosphates, as well as Cd2+ compartmentation into organelles.


Assuntos
Cádmio/metabolismo , Euglena gracilis/metabolismo , Animais , Biodegradação Ambiental , Cisteína/metabolismo , Dipeptídeos/metabolismo , Resistência a Medicamentos , Euglena gracilis/efeitos dos fármacos , Euglena gracilis/crescimento & desenvolvimento , Glutamato-Cisteína Ligase/isolamento & purificação , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Mercúrio/farmacologia , Fenótipo , Fitoquelatinas , Compostos de Sulfidrila/metabolismo , Sulfetos/metabolismo
7.
Glia ; 44(2): 119-28, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14515328

RESUMO

Hyposmolarity (-30%) in cultured cerebellar astrocytes raised cytosolic Ca2+ concentration ([Ca2+]i) from 160 to 400 nM and activated the osmosensitive taurine release (OTR) pathway. Although OTR is essentially [Ca2+]i-independent, further increase in [Ca2+]i by ionomycin strongly enhanced OTR, with a more robust effect at low and mild osmolarity reductions. Ionomycin did not affect isosmotic taurine efflux. OTR was decreased by tyrphostin A25 and increased by ortho-vanadate, suggesting a modulation by tyrosine kinase or phosphorylation state. Inhibition of phosphatidylinositol-3-kinase activity by wortmannin markedly decreased OTR and the ionomycin increase. Conversely, OTR and the ionomycin effect were independent of ERK1/ERK2 activation. OTR and its potentiation by ionomycin differed in their sensitivity to CaM and CaMK blockers and in the requirement of an intact cytoskeleton for the ionomycin effect, but not for normal OTR. Changes in the actin cytoskeleton organization elicited by hyposmolarity were not observed in ionomycin-treated cells, which may permit the operation of CaM/CaMK pathways involved in the OTR potentiation by [Ca2+]i rise. OTR potentiation by [Ca2+]i requires the previous or simultaneous activation/operation of the taurine release mechanism and is not modifying its set point, but rather increasing the effectiveness of the pathway, resulting in a more efficient volume regulation. This may have a beneficial effect in pathological situations with concurrent swelling and [Ca2+]i elevation in astrocytes.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Cerebelo/metabolismo , Citosol/metabolismo , Taurina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Tamanho Celular/efeitos dos fármacos , Tamanho Celular/fisiologia , Células Cultivadas , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Citosol/efeitos dos fármacos , Citosol/patologia , Ionomicina/farmacologia , Concentração Osmolar , Ratos
8.
Pflugers Arch ; 445(1): 87-96, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12397392

RESUMO

The chicken retina was exposed to 20% hyposmotic or ischaemia-like (54 mM KCl and 1 mM ouabain) conditions and changes in cell volume, amino acid release and activation of protein tyrosine kinases measured. To investigate possible connection between these cellular events, the effect of tyrosine kinase blockers on (3)H-taurine, (3)H-GABA and (3)H- D-aspartate (as a tracer for glutamate) efflux was examined. Both hyposmotic and ischaemic conditions increased phosphorylation of the tyrosine kinase p125 focal adhesion kinase (p125(FAK)) and the mitogen-activated protein kinase-p38 (MAPK-p38), but not of the extracellular-signal-related kinases-1/2 (ERK1/ERK2), and markedly activated the tyrosine kinase target enzyme phosphatidylinositide 3-kinase (PI3K). Hyposmolarity and ischaemia both led to rapid retinal swelling followed by active volume recovery of 84% (hyposmolarity) and 40% (ischaemia), together with rapid release of taurine, GABA and D-aspartate. Taurine and GABA efflux under both conditions was reduced markedly by tyrosine kinase and PI3K blockers (50 microM tyrphostin A23, 50 microM genistein, 100 nM wortmannin, 25 microM LY294002) and was decreased by 85% when ischaemia-induced swelling was prevented. About 65% of D-aspartate efflux occurred irrespective of swelling in ischaemia and was either less sensitive (hyposmotic) or largely resistant (ischaemia) to the blockers. These results suggest that in ischaemia, GABA and taurine react primarily to swelling with a typical osmolyte response, while glutamate differs in its release mechanisms under both hyposmotic and ischaemic conditions. These findings suggest new strategies for evaluating the contribution of swelling to excitotoxicity in ischaemia.


Assuntos
Aminoácidos/metabolismo , Isquemia/metabolismo , Proteínas Tirosina Quinases/metabolismo , Vasos Retinianos , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Animais , Ácido Aspártico/metabolismo , Galinhas , Canais de Cloreto/antagonistas & inibidores , Isoenzimas/metabolismo , Ácido Niflúmico/farmacologia , Nitrobenzoatos/farmacologia , Concentração Osmolar , Fosfatidilinositol 3-Quinases/metabolismo , Taurina/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...