Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(44): e202311186, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37682023

RESUMO

Multicomponent reactions are of utmost importance at generating a unique, wide, and complex chemical space. Herein we describe a novel multicomponent approach based on the combination of the isonitrile-tetrazine (4+1) cycloaddition and the Ugi four-component reaction to generate pyrazole amide derivatives. The scope of the reaction as well as mechanistic insights governing the 4H-pyrazol-4-imine tautomerization are provided. This multicomponent process provides access to a new chemical space of pyrazole amide derivatives and offers a tool for peptide modification and stapling.

2.
Sci Rep ; 12(1): 19474, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376343

RESUMO

AntiMicrobial Resistance (AMR) is a worldwide health emergency. ESKAPE pathogens include the most relevant AMR bacterial families. In particular, Gram-negative bacteria stand out due to their cell envelope complexity which exhibits strong resistance to antimicrobials. A key element for AMR is the chemical structure of lipid A, modulating the physico-chemical properties of the membrane and permeability to antibiotics. Liposomes are used as models of bacterial membrane infective vesicles. In this work, coarse-grained molecular dynamics simulations were used to model liposomes from ESKAPE Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa). We captured the role of lipid A, cardiolipin and cholesterol on liposome morphology and physico-chemical properties. Additionally, the reported antimicrobial peptides Cecropin B1, JB95, and PTCDA1-kf, were used to unveil their implications on membrane disruption. This study opens a promising starting point to understand molecular keys of bacterial membranes and to promote the discovery of new antimicrobials to overcome AMR.


Assuntos
Acinetobacter baumannii , Lipossomos , Humanos , Lipídeo A , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa , Escherichia coli , Colesterol , Testes de Sensibilidade Microbiana
3.
ACS Omega ; 6(9): 6041-6054, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33718695

RESUMO

Antimicrobial resistance (AMR) represents a major threat to global public health in the 21st century, dramatically increasing the pandemic expectations in the coming years. The ongoing need to develop new antimicrobial treatments that are effective against multi-drug-resistant pathogens has led the research community to investigate innovative strategies to tackle AMR. The bacterial cell envelope has been identified as one of the key molecular players responsible for antibiotic resistance, attracting considerable interest as a potential target for novel antimicrobials effective against AMR, to be used alone or in combination with other drugs. However, the multicomponent complexity of bacterial membranes provides a heterogeneous morphology, which is typically difficult to study at the molecular level by experimental techniques, in spite of the significant development of fast and efficient experimental protocols. In recent years, computational modeling, in particular, molecular dynamics simulations, has proven to be an effective tool to reveal key aspects in the architecture and membrane organization of bacterial cell walls. Here, after a general overview about bacterial membranes, AMR mechanisms, and experimental approaches to study AMR, we review the state-of-the-art computational approaches to investigate bacterial AMR envelopes, including their limitations and challenges ahead. Representative examples illustrate how these techniques improve our understanding of bacterial membrane resistance mechanisms, hopefully leading to the development of novel antimicrobial drugs escaping from bacterial resistance strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...