Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 31(2): 569-583, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28148780

RESUMO

Regulation of bone development, growth, and remodeling traditionally has been thought to depend on endocrine and autocrine/paracrine modulators. Recently, however, brain-derived signals have emerged as key regulators of bone metabolism, although their mechanisms of action have been poorly understood. We reveal the existence of an ancient parathyroid hormone (Pth)4 in zebrafish that was secondarily lost in the eutherian mammals' lineage, including humans, and that is specifically expressed in neurons of the hypothalamus and appears to be a central neural regulator of bone development and mineral homeostasis. Transgenic fish lines enabled mapping of axonal projections leading from the hypothalamus to the brainstem and spinal cord. Targeted laser ablation demonstrated an essential role for of pth4-expressing neurons in larval bone mineralization. Moreover, we show that Runx2 is a direct regulator of pth4 expression and that Pth4 can activate cAMP signaling mediated by Pth receptors. Finally, gain-of-function experiments show that Pth4 can alter calcium/phosphorus levels and affect expression of genes involved in phosphate homeostasis. Based on our discovery and characterization of Pth4, we propose a model for evolution of bone homeostasis in the context of the vertebrate transition from an aquatic to a terrestrial lifestyle.-Suarez-Bregua, P., Torres-Nuñez, E., Saxena, A., Guerreiro, P., Braasch, I., Prober, D. A., Moran, P., Cerda-Reverter, J. M., Du, S. J., Adrio, F., Power, D. M., Canario, A. V. M., Postlethwait, J. H., Bronner, M E., Cañestro, C., Rotllant, J. Pth4, an ancient parathyroid hormone lost in eutherian mammals, reveals a new brain-to-bone signaling pathway.


Assuntos
Evolução Biológica , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Xenopus/metabolismo , Animais , Animais Geneticamente Modificados , Densidade Óssea , Clonagem Molecular , Fator de Crescimento de Fibroblastos 23 , Genômica , Larva , Mamíferos , Rede Nervosa , Neurônios/metabolismo , Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/genética , Sintenia , Proteínas de Xenopus/genética , Peixe-Zebra/embriologia
2.
Dev Dyn ; 244(5): 693-702, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25728805

RESUMO

BACKGROUND: SPARC/osteonectin is an evolutionarily conserved matricellular protein that modulates cell-matrix interaction and cell function. In all vertebrates, SPARC is dynamically expressed during embryogenesis. However, the precise function of SPARC and the regulatory elements required for its expression in particular during early embryogenesis are largely unknown. RESULTS: The present study was undertaken to explore the molecular mechanisms that regulate sparc gene expression by in vivo functional characterization of the sparc promoter and identification of possible putative regulatory elements that govern basal promoter activity. We report here transient expression analyses of eGFP expression from transgenic zebrafish containing a Sparc-iTol2-eGFP-BAC and/or 7.25 kb-sparc-Tol2-eGFP constructs. eGFP expression was specifically found in the notochord, otic vesicle, fin fold, intermediate cell mass, and olfactory placode of BAC and Tol2 transposon vectors injected embryos. Deletion analysis revealed that promoter activity resides in the unique 5'-untranslated intronic region. Computer-based analysis revealed a putative CpG island immediately proximal to the translation start site within the intron sequence. Global inhibition of methylation with 5-Aza-2-deoxycytidine promoted sparc expression in association with decreasing CpG methylation. CONCLUSIONS: Taken together, these data identify a contributory role for DNA methylation in regulating sparc expression in zebrafish embryogenesis.


Assuntos
Metilação de DNA/fisiologia , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Osteonectina/biossíntese , Regiões Promotoras Genéticas/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Embrião não Mamífero/citologia , Osteonectina/genética , Peixe-Zebra/genética
3.
Cells Tissues Organs ; 197(3): 196-208, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23183322

RESUMO

Sparc (osteonectin) is a multifunctional matricellular glycoprotein expressed by many differentiated cells. Members of this family mediate cell-matrix interactions rather than acting as structural components of the extracellular matrix (ECM); therefore, they can influence many remodelling events, including haematopoiesis. We have investigated the role of sparc in embryonic haematopoiesis using a morpholino antisense oligonucleotide-based knockdown approach. Knockdown of sparc function resulted in specific erythroid progenitor cell differentiation defects that were highlighted by changes in gene expression and morphology, which could be rescued by injection of sparc mRNA. Furthermore, a comparison of blood phenotypes of sparc and fgfs knockdowns with similar defects and the sparc rescue of the fgf21 blood phenotype places sparc downstream of fgf21 in the genetic network regulating haematopoiesis in zebrafish. These results establish a role for an ECM protein (Sparc) as an important regulator of embryonic haematopoiesis during early development in zebrafish.


Assuntos
Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Hematopoese/fisiologia , Osteonectina/fisiologia , Animais , Processos de Crescimento Celular/fisiologia , Células Cultivadas , Expressão Gênica , Osteonectina/genética , Osteonectina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra
4.
Photochem Photobiol ; 88(3): 701-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22242699

RESUMO

UVR exposure is known to cause developmental defects in a variety of organisms including aquatic species but little is known about the underlying molecular mechanisms. In this work we used zebrafish (Danio rerio) embryos as a model system to characterize the UVR effects on fish species. Larval viability was measured for embryos exposed to several UVR spectral treatments by using a solar simulator lamp and an array of UV cutoff filters under controlled conditions in the laboratory. Survival rate and occurrence of development abnormalities, mainly caudal (posterior) notochord bending/torsion, were seriously affected in UV-exposed larvae reaching values of 53% and 72%, respectively, compared with non-UV-exposed larvae after 6 days postfertilization (dpf). In order to elucidate the molecular mechanisms involved, a matricellular glycoprotein named osteonectin and the expression of a DNA-repair related gene, p53, were studied in relation to UVR exposure. The results indicate that osteonectin and p53 expression were increased under UVR exposure due to wavelengths shorter than 335 nm (i.e. mainly UVB) and 350 nm (i.e. short UVA and UVB), respectively. Furthermore, parallel experiments with microinjections of osteonectin-capped RNA showed that malformations induced by osteonectin overexpression were similar to those observed after a UVR exposure. Consequently this study shows a potential role of osteonectin in morphological deformities induced by solar UV radiation in zebrafish embryos.


Assuntos
Raios Ultravioleta , Peixe-Zebra/embriologia , Animais , Sequência de Bases , Primers do DNA , Reparo do DNA , Genes p53 , Larva/crescimento & desenvolvimento , Osteonectina/genética , Reação em Cadeia da Polimerase , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA