Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34067240

RESUMO

Recreational running (RR) is becoming a popular way to increase physical activity for improving health, together with a higher incidence of knee injuries. The aim was to analyze the effect of a four-week supplementation with a mixture of Harpagophytum procumbens, Zingiber officinale and Bixa orellana on males, middle-aged, RR with an undiagnosed knee discomfort. A randomized triple-blind placebo-control trial was conducted among male RR aged 40-60 years suffering from self-declared knee discomfort after training. Participants were assigned to supplementation (2 g/day in 6 doses; n = 13; intervention group (IG)) or matched placebo (n = 15; control group (CG)) for 4 weeks. At pre- and post-intervention, assessment of routine blood biomarkers, body composition, running biomechanics and body temperature was performed using standardized procedures. Machine learning (ML) techniques were used to classify whether subjects belonged to IG or CG. ML model was able to correctly classify individuals as IG or CG with a median accuracy of 0.857. Leg fat mass decreased significantly (p = 0.037) and a deeper reduction in knee thermograms was observed in IG (p < 0.05). Safety evaluation revealed no significant differences in the rest of parameters studied. Subjects belonging to IG or CG are clearly differentiated, pointing into an effect of the supplement of ameliorating inflammation.


Assuntos
Harpagophytum , Zingiber officinale , Bixaceae , Suplementos Nutricionais , Humanos , Masculino , Pessoa de Meia-Idade , Dor , Autorrelato
2.
J Cereb Blood Flow Metab ; 38(1): 136-150, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28186430

RESUMO

Cerebral blood flow (CBF) is regulated to secure brain O2 delivery while simultaneously avoiding hyperperfusion; however, both requisites may conflict during sprint exercise. To determine whether brain O2 delivery or CBF is prioritized, young men performed sprint exercise in normoxia and hypoxia (PIO2 = 73 mmHg). During the sprints, cardiac output increased to ∼22 L min-1, mean arterial pressure to ∼131 mmHg and peak systolic blood pressure ranged between 200 and 304 mmHg. Middle-cerebral artery velocity (MCAv) increased to peak values (∼16%) after 7.5 s and decreased to pre-exercise values towards the end of the sprint. When the sprints in normoxia were preceded by a reduced PETCO2, CBF and frontal lobe oxygenation decreased in parallel ( r = 0.93, P < 0.01). In hypoxia, MCAv was increased by 25%, due to a 26% greater vascular conductance, despite 4-6 mmHg lower PaCO2 in hypoxia than normoxia. This vasodilation fully accounted for the 22 % lower CaO2 in hypoxia, leading to a similar brain O2 delivery during the sprints regardless of PIO2. In conclusion, when a conflict exists between preserving brain O2 delivery or restraining CBF to avoid potential damage by an elevated perfusion pressure, the priority is given to brain O2 delivery.


Assuntos
Pressão Arterial/fisiologia , Circulação Cerebrovascular/fisiologia , Exercício Físico/fisiologia , Lobo Frontal/irrigação sanguínea , Hemodinâmica/fisiologia , Adulto , Humanos , Hipóxia/fisiopatologia , Masculino , Consumo de Oxigênio/fisiologia , Adulto Jovem
3.
Nutr Hosp ; 34(5): 1089-1098, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29130706

RESUMO

INTRODUCTION: Androgens play a major role in fat oxidation; however, the effects of androgens depend, among other factors, on the intrinsic characteristics of the androgen receptor (AR). Lower repetitions of CAG and GGN polymorphism appear to have a protective effect on fat accumulation in the transition from adolescent to mid-twenties. Whether a similar protective effect is present later in life remains unknown. The aims of this study were: a) to evaluate if extreme CAG and GGN repeat polymorphisms of the androgen receptors influence body fat mass, its regional distribution, resting metabolic rate (RMR), maximal fat oxidation capacity (MFO) and serum leptin, free testosterone and osteocalcin in healthy adult men; and b) to determine the longitudinal effects on fat tissue accumulation after 6.4 years of follow-up. METHODS: CAG and GGN repeats length were measured in 319 healthy men (mean ± standard deviation [SD]: 28.3 ± 7.6 years). From these, we selected the subjects with extreme short (CAGS < or equal 19; n = 7) and long (CAGL > or equal 24; n = 10) CAG repeats, and the subjects with short (GGNS < or equal to 22; n = 9) and long (GGNL > or equal to 25; n = 10) GGN repeats. Body composition was assessed by DXA and serum levels of leptin, free testosterone and osteocalcin by ELISA. After 6.4 years of follow-up, DXA was repeated, and resting metabolic rate (RMR), MFO and VO2max determined by indirect calorimetry. RESULTS: CAGS and CAGL subjects had similar RMR and accumulated comparable amounts of fat tissue over 6.4 ± 1.0 years of follow-up. However, CAGL had higher MFO and total lean mass than CAGS (p < 0.05). Men with GGNS accumulated greater amount of total fat mass than men with GGNL, particularly in the trunk region seven years later. This concurred with a greater MFO in the GGNL group (p < 0.05), who accumulated less fat mass. Free testosterone was associated with MFO in absolute values (r = 0.45; p < 0.05) and MFO per kg of lower extremity lean mass per height squared (r = 0.35; p < 0.05). CONCLUSIONES: CAG and GGN repeat polymorphisms may influence muscle fat oxidation capacity and may have a role in the accumulation of fat over the years.


Assuntos
Adiposidade/genética , Metabolismo dos Lipídeos/genética , Receptores Androgênicos/genética , Adolescente , Adulto , Limiar Anaeróbio/genética , Estudos Transversais , Voluntários Saudáveis , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Oxirredução , Polimorfismo Genético/genética , Repetições de Trinucleotídeos/genética , População Branca , Adulto Jovem
4.
Nutr. hosp ; 34(5): 1089-1098, sept.-oct. 2017. tab, graf
Artigo em Inglês | IBECS | ID: ibc-167568

RESUMO

Introduction: Androgens play a major role in fat oxidation; however, the effects of androgens depend, among other factors, on the intrinsic characteristics of the androgen receptor (AR). Lower repetitions of CAG and GGN polymorphism appear to have a protective effect on fat accumulation in the transition from adolescent to mid-twenties. Whether a similar protective effect is present later in life remains unknown. The aims of this study were: a) to evaluate if extreme CAG and GGN repeat polymorphisms of the androgen receptors influence body fat mass, its regional distribution, resting metabolic rate (RMR), maximal fat oxidation capacity (MFO) and serum leptin, free testosterone and osteocalcin in healthy adult men; and b) to determine the longitudinal effects on fat tissue accumulation after 6.4 years of follow-up. Methods: CAG and GGN repeats length were measured in 319 healthy men (mean ± standard deviation [SD]: 28.3 ± 7.6 years). From these, we selected the subjects with extreme short (CAGS ≤ 19; n = 7) and long (CAGL ≥ 24; n = 10) CAG repeats, and the subjects with short (GGNS ≤ 22; n = 9) and long (GGNL ≥ 25; n = 10) GGN repeats. Body composition was assessed by DXA and serum levels of leptin, free testosterone and osteocalcin by ELISA. After 6.4 years of follow-up, DXA was repeated, and resting metabolic rate (RMR), MFO and VO2max determined by indirect calorimetry. Results: CAGS and CAGL subjects had similar RMR and accumulated comparable amounts of fat tissue over 6.4 ± 1.0 years of follow-up. However, CAGL had higher MFO and total lean mass than CAGS (p < 0.05). Men with GGNS accumulated greater amount of total fat mass than men with GGNL, particularly in the trunk region seven years later. This concurred with a greater MFO in the GGNL group (p < 0.05), who accumulated less fat mass. Free testosterone was associated with MFO in absolute values (r = 0.45; p < 0.05) and MFO per kg of lower extremity lean mass per height squared (r = 0.35; p < 0.05). Conclusions: CAG and GGN repeat polymorphisms may influence muscle fat oxidation capacity and may have a role in the accumulation of fat over the years (AU)


Introducción: los andrógenos juegan un papel importante en la oxidación de grasas; sin embargo, el efecto de los andrógenos depende, entre otros factores, de las características intrínsecas del receptor de andrógenos (RA). Un menor número de repeticiones CAG y GGN del RA parecen tener un efecto protector sobre la acumulación de grasa en la transición de la adolescencia hasta la veintena. Se desconoce si adelante en la vida persiste un efecto protector similar. Los objetivos de este estudio fueron: a) evaluar si repeticiones extremas de los polimorfismos CAG y GGN del RA influyen sobre la masa grasa corporal, su distribución regional, la tasa metabólica en reposo (RMR), la máxima oxidación de grasas (MFO) y la concentración sérica de leptina, testosterona libre y osteocalcina en hombres sanos; y b) determinar los efectos longitudinales sobre la acumulación de grasa después de 6.4 años de seguimiento. Métodos: la longitud de las repeticiones de CAG y GGN fueron medidas en 319 hombres sanos (media ± desviación estándar [SD]: 28,3 ± 7,6 años). De estos, seleccionamos los sujetos con repeticiones del CAG extremas cortas (CAGS ≤ 19; n = 7) y largas (CAGL ≥ 24; n = 10), y los sujetos con repeticiones del GGN extremas cortas (GGNS ≤ 22; n = 9) y largas (GGNL ≥ 25; n = 10). Se evaluaron la composición corporal mediante DXA y los niveles séricos de leptina, testosterona libre y osteocalcina por ELISA. Tras 6.4 años de seguimiento el DXA fue repetido, y la tasa metabólica en reposo (RMR), máxima oxidación de grasas (MFO) y VO2max fueron determinados mediante calorimetría indirecta. Resultados: los grupos CAGS y CAGL fueron comparables en RMR y cantidad de tejido graso tras 6,4 ± 1,0 años de seguimiento. Sin embargo, el grupo CAGL tuvo mayor MFO y masa libre de grasa que el grupo CAGS (p < 0,05). Los hombres con GGNS acumularon mayor cantidad de masa grasa total que los hombres con GGNL, particularmente en la región del tronco siete años después. Esto concordó con un mayor MFO en el grupo GGNL (p < 0,05), que acumuló menos masa grasa. La testosterona libre se asoció con el MFO en valores absolutos (r = 0,45; p < 0,05) y con MFO expresado por kg de masa libre de grasa de las piernas al cuadrado (r = 0,35; p < 0,05). Conclusiones: las repeticiones del polimorfismo del CAG y GGN pueden influenciar la capacidad muscular de oxidación de grasas y pueden tener un rol en la acumulación de grasa con los años (AU)


Assuntos
Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Polimorfismo Genético/fisiologia , Receptores Androgênicos/administração & dosagem , Osteocalcina/administração & dosagem , Leptina/administração & dosagem , Composição Corporal/fisiologia , Estudos Longitudinais , Calorimetria Indireta/métodos , Declaração de Helsinki , 28599
5.
Hum Mov Sci ; 55: 18-30, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28750258

RESUMO

With the overall aim of improving the synthesis of handwritten signatures, we have studied how muscle activation depends on handwriting style for both text and flourish. Surface electromyographic (EMG) signals from a set of twelve arm and trunk muscles were recorded in synchronization with handwriting produced on a digital Tablet. Correlations between these EMG signals and handwritten trajectory signals were analyzed so as to define the sequence of muscles activated during the different parts of the signature. Our results establish a correlation between the speed of the movement, stroke size, handwriting style and muscle activation. Muscle activity appeared to be clustered as a function of movement speed and handwriting style, a finding which may be used for filter design in a signature synthesizer.


Assuntos
Escrita Manual , Músculo Esquelético/fisiologia , Adulto , Artrometria Articular , Eletromiografia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Processos Mentais/fisiologia , Movimento/fisiologia , Processamento de Sinais Assistido por Computador , Adulto Jovem
6.
Front Physiol ; 7: 333, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27582710

RESUMO

To determine the level of hypoxia from which muscle activation (MA) is reduced during incremental exercise to exhaustion (IE), and the role played by PIO2 in this process, ten volunteers (21 ± 2 years) performed four IE in severe acute hypoxia (SAH) (PIO2 = 73 mmHg). Upon exhaustion, subjects were asked to continue exercising while the breathing gas mixture was swiftly changed to a placebo (73 mmHg) or to a higher PIO2 (82, 92, 99, and 142 mmHg), and the IE continued until a new exhaustion. At the second exhaustion, the breathing gas was changed to room air (normoxia) and the IE continued until the final exhaustion. MA, as reflected by the vastus medialis (VM) and lateralis (VL) EMG raw and normalized root mean square (RMSraw, and RMSNz, respectively), normalized total activation index (TAINz), and burst duration were 8-20% lower at exhaustion in SAH than in normoxia (P < 0.05). The switch to a placebo or higher PIO2 allowed for the continuation of exercise in all instances. RMSraw, RMSNz, and TAINz were increased by 5-11% when the PIO2 was raised from 73 to 92, or 99 mmHg, and VL and VM averaged RMSraw by 7% when the PIO2 was elevated from 73 to 142 mmHg (P < 0.05). The increase of VM-VL average RMSraw was linearly related to the increase in PIO2, during the transition from SAH to higher PIO2 (R (2) = 0.915, P < 0.05). In conclusion, increased PIO2 at exhaustion reduces fatigue and allows for the continuation of exercise in moderate and SAH, regardless of the effects of PIO2 on MA. At task failure, MA is increased during the first 10 s of increased PIO2 when the IE is performed at a PIO2 close to 73 mmHg and the PIO2 is increased to 92 mmHg or higher. Overall, these findings indicate that one of the central mechanisms by which severe hypoxia may cause central fatigue and task failure is by reducing the capacity for reaching the appropriate level of MA to sustain the task. The fact that at exhaustion in severe hypoxia the exercise was continued with the placebo-gas mixture demonstrates that this central mechanism has a cognitive component.

7.
Eur J Sport Sci ; 16(4): 455-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26305090

RESUMO

OBJECTIVES: This study was designed to investigate the association of gender, fibre type composition, and anaerobic performance with the basal skeletal muscle signalling cascades regulating muscle phenotype. DESIGN: Muscle biopsies were obtained from 25 men and 10 women all young and healthy. METHODS: Protein phosphorylation of Thr(172)AMPKα, Ser(221)ACCß, Thr(286)CaMKII as well as total protein abundance of PGC-1α, SIRT1, and CnA were measured by Western blot and anaerobic performance by the Wingate test. RESULTS: Percent type I myosin heavy chain (MHC I) was lower in men (37.1 ± 10.4 vs. 58.5 ± 12.5, P < .01). Total, free testosterone and free androgen index were higher in men (11.5, 36.6 and 40.6 fold, respectively, P < .01). AMPKα phosphorylation was 2.2-fold higher in men compared to women (P < .01). Total Ser(221)ACCß and Thr(286)CaMKII fractional phosphorylation tended to be higher in men (P = .1). PGC1-α and SIRT1 total protein expression was similar in men and women, whereas CnA tended to be higher in men (P = .1). Basal AMPKα phosphorylation was linearly related to the percentage of MHC I in men (r = 0.56; P < .01), but not in women. No association was observed between anaerobic performance and basal phosphorylations in men and women, analysed separately. CONCLUSION: In summary, skeletal muscle basal AMPKα phosphorylation is higher in men compared to women, with no apparent effect on anaerobic performance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/fisiologia , Fosforilação , Fatores Sexuais , Adulto , Calcineurina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Feminino , Humanos , Masculino , Cadeias Pesadas de Miosina/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Adulto Jovem
8.
Physiol Rep ; 3(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26508736

RESUMO

Negative arterial to end-tidal pco2 differences ((a-ET)pco2) have been reported in normoxia. To determine the influence of blood temperature on (a-ET)pco2, 11 volunteers (21 ± 2 years) performed incremental exercise to exhaustion in normoxia (Nx, Pio2: 143 mmHg) and hypoxia (Hyp, Pio2: 73 mmHg), while arterial blood gases and temperature (ABT) were simultaneously measured together with end-tidal pco2 (PE tco2). After accounting for blood temperature, the (a-ET) pco2 was reduced (in absolute values) from -4.2 ± 1.6 to -1.1 ± 1.5 mmHg in normoxia and from -1.7 ± 1.6 to 0.9 ± 0.9 mmHg in hypoxia (both P < 0.05). The temperature corrected (a-ET)pco2 was linearly related with absolute and relative exercise intensity, VO2, VCO2, and respiratory rate (RR) in normoxia and hypoxia (R(2): 0.52-0.59). Exercise CO2 production and PE tco2 values were lower in hypoxia than normoxia, likely explaining the greater (less negative) (a-ET)pco2 difference in hypoxia than normoxia (P < 0.05). At near-maximal exercise intensity the (a-ET)pco2 lies close to 0 mmHg, that is, the mean Paco2 and the mean PE tco2 are similar. The mean exercise (a-ET)pco2 difference is closely related to the mean A-aDO2 difference (r = 0.90, P < 0.001), as would be expected if similar mechanisms perturb the gas exchange of O2 and CO2 during exercise. In summary, most of the negative (a-ET)pco2 values observed in previous studies are due to lack of correction of Paco2 for blood temperature. The absolute magnitude of the (a-ET)pco2 difference is lower during exercise in hypoxia than normoxia.

9.
J Physiol ; 593(20): 4631-48, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26250346

RESUMO

To determine the mechanisms causing task failure during incremental exercise to exhaustion (IE), sprint performance (10 s all-out isokinetic) and muscle metabolites were measured before (control) and immediately after IE in normoxia (P(IO2) 143 mmHg) and hypoxia (P(IO2): 73 mmHg) in 22 men (22 ± 3 years). After IE, subjects recovered for either 10 or 60 s, with open circulation or bilateral leg occlusion (300 mmHg) in random order. This was followed by a 10 s sprint with open circulation. Post-IE peak power output (W(peak)) was higher than the power output reached at exhaustion during IE (P < 0.05). After 10 and 60 s recovery in normoxia, W(peak) was reduced by 38 ± 9 and 22 ± 10% without occlusion, and 61 ± 8 and 47 ± 10% with occlusion (P < 0.05). Following 10 s occlusion, W(peak) was 20% higher in hypoxia than normoxia (P < 0.05), despite similar muscle lactate accumulation ([La]) and phosphocreatine and ATP reduction. Sprint performance and anaerobic ATP resynthesis were greater after 60 s compared with 10 s occlusions, despite the higher [La] and [H(+)] after 60 s compared with 10 s occlusion recovery (P < 0.05). The mean rate of ATP turnover during the 60 s occlusion was 0.180 ± 0.133 mmol (kg wet wt)(-1) s(-1), i.e. equivalent to 32% of leg peak O2 uptake (the energy expended by the ion pumps). A greater degree of recovery is achieved, however, without occlusion. In conclusion, during incremental exercise task failure is not due to metabolite accumulation or lack of energy resources. Anaerobic metabolism, despite the accumulation of lactate and H(+), facilitates early recovery even in anoxia. This points to central mechanisms as the principal determinants of task failure both in normoxia and hypoxia, with lower peripheral contribution in hypoxia.


Assuntos
Exercício Físico/fisiologia , Fadiga/fisiopatologia , Trifosfato de Adenosina/metabolismo , Adulto , Teste de Esforço , Humanos , Concentração de Íons de Hidrogênio , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Ácido Láctico/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Consumo de Oxigênio , Fosfocreatina/metabolismo , Adulto Jovem
10.
J Physiol ; 593(20): 4649-64, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26258623

RESUMO

To determine the contribution of convective and diffusive limitations to V̇(O2peak) during exercise in humans, oxygen transport and haemodynamics were measured in 11 men (22 ± 2 years) during incremental (IE) and 30 s all-out cycling sprints (Wingate test, WgT), in normoxia (Nx, P(IO2): 143 mmHg) and hypoxia (Hyp, P(IO2): 73 mmHg). Carboxyhaemoglobin (COHb) was increased to 6-7% before both WgTs to left-shift the oxyhaemoglobin dissociation curve. Leg V̇(O2) was measured by the Fick method and leg blood flow (BF) with thermodilution, and muscle O2 diffusing capacity (D(MO2)) was calculated. In the WgT mean power output, leg BF, leg O2 delivery and leg V̇(O2) were 7, 5, 28 and 23% lower in Hyp than Nx (P < 0.05); however, peak WgT D(MO2) was higher in Hyp (51.5 ± 9.7) than Nx (20.5 ± 3.0 ml min(-1) mmHg(-1), P < 0.05). Despite a similar P(aO2) (33.3 ± 2.4 and 34.1 ± 3.3 mmHg), mean capillary P(O2) (16.7 ± 1.2 and 17.1 ± 1.6 mmHg), and peak perfusion during IE and WgT in Hyp, D(MO2) and leg V̇(O2) were 12 and 14% higher, respectively, during WgT than IE in Hyp (both P < 0.05). D(MO2) was insensitive to COHb (COHb: 0.7 vs. 7%, in IE Hyp and WgT Hyp). At exhaustion, the Y equilibration index was well above 1.0 in both conditions, reflecting greater convective than diffusive limitation to the O2 transfer in both Nx and Hyp. In conclusion, muscle V̇(O2) during sprint exercise is not limited by O2 delivery, O2 offloading from haemoglobin or structure-dependent diffusion constraints in the skeletal muscle. These findings reveal a remarkable functional reserve in muscle O2 diffusing capacity.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Consumo de Oxigênio/fisiologia , Adulto , Débito Cardíaco , Fadiga/fisiopatologia , Humanos , Hipóxia/fisiopatologia , Perna (Membro)/irrigação sanguínea , Masculino , Fluxo Sanguíneo Regional , Adulto Jovem
11.
Front Physiol ; 6: 414, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26793117

RESUMO

To determine whether task failure during incremental exercise to exhaustion (IE) is principally due to reduced neural drive and increased metaboreflex activation eleven men (22 ± 2 years) performed a 10 s control isokinetic sprint (IS; 80 rpm) after a short warm-up. This was immediately followed by an IE in normoxia (Nx, PIO2:143 mmHg) and hypoxia (Hyp, PIO2:73 mmHg) in random order, separated by a 120 min resting period. At exhaustion, the circulation of both legs was occluded instantaneously (300 mmHg) during 10 or 60 s to impede recovery and increase metaboreflex activation. This was immediately followed by an IS with open circulation. Electromyographic recordings were obtained from the vastus medialis and lateralis. Muscle biopsies and blood gases were obtained in separate experiments. During the last 10 s of the IE, pulmonary ventilation, VO2, power output and muscle activation were lower in hypoxia than in normoxia, while pedaling rate was similar. Compared to the control sprint, performance (IS-Wpeak) was reduced to a greater extent after the IE-Nx (11% lower P < 0.05) than IE-Hyp. The root mean square (EMGRMS) was reduced by 38 and 27% during IS performed after IE-Nx and IE-Hyp, respectively (Nx vs. Hyp: P < 0.05). Post-ischemia IS-EMGRMS values were higher than during the last 10 s of IE. Sprint exercise mean (IS-MPF) and median (IS-MdPF) power frequencies, and burst duration, were more reduced after IE-Nx than IE-Hyp (P < 0.05). Despite increased muscle lactate accumulation, acidification, and metaboreflex activation from 10 to 60 s of ischemia, IS-Wmean (+23%) and burst duration (+10%) increased, while IS-EMGRMS decreased (-24%, P < 0.05), with IS-MPF and IS-MdPF remaining unchanged. In conclusion, close to task failure, muscle activation is lower in hypoxia than in normoxia. Task failure is predominantly caused by central mechanisms, which recover to great extent within 1 min even when the legs remain ischemic. There is dissociation between the recovery of EMGRMS and performance. The reduction of surface electromyogram MPF, MdPF and burst duration due to fatigue is associated but not caused by muscle acidification and lactate accumulation. Despite metaboreflex stimulation, muscle activation and power output recovers partly in ischemia indicating that metaboreflex activation has a minor impact on sprint performance.

12.
ScientificWorldJournal ; 2014: 145747, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25431775

RESUMO

The effects of varying recovery modes and the influence of preexercise sodium bicarbonate and carbohydrate ingestion on repeated high intensity performance, acid-base response, and recovery were analyzed in 12 well-trained males. They completed three repeated high intensity running bouts to exhaustion with intervening recovery periods of 25 min under the following conditions: sodium bicarbonate, active recovery (BIC); carbohydrate ingestion, active recovery (CHO); placebo ingestion, active recovery (ACTIVE); placebo ingestion, passive recovery (PASSIVE). Blood lactate (BLa), blood gases, heart rate, and time to exhaustion were collected. The three high intensity bouts had a duration of 138 ± 9, 124 ± 6, and 121 ± 6 s demonstrating a decrease from bout 1 to bout 3. Supplementation strategy had no effect on performance in the first bout, even with differences in pH and bicarbonate (HCO3(-)). Repeated sprint performance was not affected by supplementation strategy when compared to ACTIVE, while PASSIVE resulted in a more pronounced decrease in performance compared with all other interventions. BIC led to greater BLa, pH, and HCO3(-) values compared with all other interventions, while for PASSIVE the opposite was found. BLa recovery was lowest in PASSIVE; recovery in pH, and HCO3(-) was lower in PASSIVE and higher in BIC.


Assuntos
Desempenho Atlético/fisiologia , Bicarbonatos/administração & dosagem , Carboidratos da Dieta/administração & dosagem , Suplementos Nutricionais , Resistência Física/fisiologia , Adulto , Carboidratos/administração & dosagem , Humanos , Masculino , Resistência Física/efeitos dos fármacos , Esforço Físico/efeitos dos fármacos , Esforço Físico/fisiologia , Corrida/fisiologia , Fatores de Tempo
13.
High Alt Med Biol ; 15(4): 472-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25225839

RESUMO

The aim of this study was to determine the influence of severe acute hypoxia on muscle activation during whole body dynamic exercise. Eleven young men performed four incremental cycle ergometer tests to exhaustion breathing normoxic (FIO2=0.21, two tests) or hypoxic gas (FIO2=0.108, two tests). Surface electromyography (EMG) activities of rectus femoris (RF), vastus medialis (VL), vastus lateralis (VL), and biceps femoris (BF) were recorded. The two normoxic and the two hypoxic tests were averaged to reduce EMG variability. Peak VO2 was 34% lower in hypoxia than in normoxia (p<0.05). The EMG root mean square (RMS) increased with exercise intensity in all muscles (p<0.05), with greater effect in hypoxia than in normoxia in the RF and VM (p<0.05), and a similar trend in VL (p=0.10). At the same relative intensity, the RMS was greater in normoxia than in hypoxia in RF, VL, and BF (p<0.05), with a similar trend in VM (p=0.08). Median frequency increased with exercise intensity (p<0.05), and was higher in hypoxia than in normoxia in VL (p<0.05). Muscle contraction burst duration increased with exercise intensity in VM and VL (p<0.05), without clear effects of FIO2. No significant FIO2 effects on frequency domain indices were observed when compared at the same relative intensity. In conclusion, muscle activation during whole body exercise increases almost linearly with exercise intensity, following a muscle-specific pattern, which is adjusted depending on the FIO2 and the relative intensity of exercise. Both VL and VM are increasingly involved in power output generation with the increase of intensity and the reduction in FIO2.


Assuntos
Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Contração Muscular/fisiologia , Doença Aguda , Análise de Variância , Eletromiografia , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Músculo Quadríceps/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...