Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2018): 20232705, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38444334

RESUMO

The correct identification of variables affecting parasite diversity and assemblage composition at different spatial scales is crucial for understanding how pathogen distribution responds to anthropogenic disturbance and climate change. Here, we used a database of avian haemosporidian parasites to test how the taxonomic and phylogenetic diversity and phylogenetic structure of the genera Plasmodium, Haemoproteus and Leucocytozoon from three zoogeographic regions are related to surrogate variables of Earth's energy input, habitat heterogeneity (climatic diversity, landscape heterogeneity, host richness and human disturbance) and ecological interactions (resource use), which was measured by a novel assemblage-level metric related to parasite niche overlap (degree of generalism). We found that different components of energy input explained variation in richness for each genus. We found that human disturbance influences the phylogenetic structure of Haemoproteus while the degree of generalism explained richness and phylogenetic structure of Plasmodium and Leucocytozoon genera. Furthermore, landscape attributes related to human disturbance (human footprint) can filter Haemoproteus assemblages by their phylogenetic relatedness. Finally, assembly processes related to resource use within parasite assemblages modify species richness and phylogenetic structure of Plasmodium and Leucocytozoon assemblages. Overall, our study highlighted the genus-specific patterns with the different components of Earth's energy budget, human disturbances and degree of generalism.


Assuntos
Haemosporida , Especificidade de Hospedeiro , Humanos , Animais , Filogenia , Efeitos Antropogênicos , Aves
2.
Rev. biol. trop ; 71(1)dic. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1449521

RESUMO

Introduction: Worldwide, expanding human activities continue to be a threat to many large-bodied species, including jaguars. As these activities continue, it is critical to understand how home range sizes will be impacted by human-modified landscapes. Objective: To evaluate the importance of protected and unprotected land on home-range size across their range. Methods: We used home range data from 117 jaguars in several habitat protection categories and human biome types. We used a Generalized Linear Mixed Model to test home range and spatial overlap with conservation categories and human biomes. Results: Most home-ranges were in Jaguar Conservation Units (62 %), followed by Protected Areas (21 %), Indigenous People's Lands (10 %) and Jaguar Movement Corridors (3 %), where 76 % of the jaguars lived inside one the first three conservation types. However, outside of conserved land, Rangeland, Cropland, Seminatural land and other human biomes were also important (24 % of the individuals). Jaguars in Rangeland, Cropland and Seminatural land had the largest home ranges. Conclusions: Although conservation land was dominant, human-impacted lands appear to play a considerable role in satisfying the spatial requirements of jaguars.


Introducción: A nivel mundial, la expansión de actividades humanas continúa teniendo un riesgo para muchas especies de cuerpo grande, tal como los jaguares. Conforme continúen estas actividades, es crucial entender el impacto de paisajes modificados sobre el tamaño de su territorio. Objetivo: Evaluar la importancia de terrenos protegidos y no protegidos sobre el tamaño de su territorio a lo largo de su rango. Métodos: Usamos datos de tamaño de los territorios de 117 jaguares en varias categorías de protección de hábitats y biomas humanos. Usamos un Modelo Mixto Lineal Generalizado para probar traslapes espaciales y de territorios con categorías de conservación y biomas humanos. Resultados: La mayoría de los territorios estaban en Unidades de Conservación de Jaguares (62 %), seguido por Áreas protegidas (21 %), Tierras de Pueblos Indígenas (10 %) y Corredores de Movimiento de Jaguares (3 %), en donde el 76 % de los jaguares vivían dentro de alguna de las primeras tres modalidades de conservación. Sin embargo, fuera de áreas protegidas, pastizales, tierras de cultivo, terrenos seminaturales y otros biomas humanos también fueron importantes (24 % de individuos). Jaguares en pastizales, tierras de cultivo, y terrenos seminaturales tuvieron territorios más grandes. Conclusiones: Aunque las áreas de conservación fueron dominantes, áreas con impacto humano parecieron jugar un rol considerable en satisfacer los requerimientos espaciales de los jaguares.

3.
Naturwissenschaften ; 110(6): 52, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889338

RESUMO

Anthropogenic land use and climate change are the greatest threats to biodiversity, especially for many globally endangered reptile species. Earth snakes (Conopsis spp.) are a poorly studied group endemic to Mexico. They have limited dispersal abilities and specialized niches, making them particularly vulnerable to anthropogenic threats. Species distribution models (SDMs) were used to assess how future climate and land-cover change scenarios might influence the distribution and habitat connectivity of three earth snakes: Conopsis biserialis (Taylor and Smith), C. lineata (Kennicott), and C. nasus (Günther). Two climate models, CNRM-CM5 (CN) and MPI-ESM-LR (MP) (Representative Concentration Pathway 85), were explored with ENMeval Maxent modelling. Important SDM environmental variables and environmental niche overlap between species were also examined. We found that C. biserialis and C. lineata were restricted by maximum temperatures whereas C. nasus was restricted by minimum ones and was more tolerant to arid vegetation. C. biserialis and C. lineata were primarily distributed in the valleys and mountains of the highlands of the TMBV, while C. nasus was mainly distributed in the Altiplano Sur (Zacatecano-Potosino). C. lineata had the smallest potential distribution and suffered the greatest contraction in the future whereas C. nasus was the least affected species in future scenarios. The Sierra de las Cruces and the Sierra Chichinautzin were identified as very important areas for connectivity. Our results suggest that C. lineata may be the most vulnerable of the three species to anthropogenic and climate changes whereas C. nasus seems to be less affected by global warming than the other species.


Assuntos
Biodiversidade , Ecossistema , México , Mudança Climática
4.
Glob Chang Biol ; 29(20): 5775-5787, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37578114

RESUMO

The world's primates have been severely impacted in diverse and profound ways by anthropogenic pressures. Here, we evaluate the impact of various infrastructures and human-modified landscapes on spatial patterns of primate species richness, at both global and regional scales. We overlaid the International Union for the Conservation of Nature (IUCN) range maps of 520 primate species and applied a global 100 km2 grid. We used structural equation modeling and simultaneous autoregressive models to evaluate direct and indirect effects of six human-altered landscapes variables (i.e., human footprint [HFP], croplands [CROP], road density [ROAD], pasture lands [PAST], protected areas [PAs], and Indigenous Peoples' lands [IPLs]) on global primate species richness, threatened and non-threatened species, as well as on species with decreasing and non-decreasing populations. Two-thirds of all primate species are classified as threatened (i.e., Critically Endangered, Endangered, and Vulnerable), with ~86% experiencing population declines, and ~84% impacted by domestic or international trade. We found that the expansion of PAST, HFP, CROP, and road infrastructure had the most direct negative effects on primate richness. In contrast, forested habitat within IPLs and PAs was positively associated in safeguarding primate species diversity globally, with an even stronger effect at the regional level. Our results show that IPLs and PAs play a critical role in primate species conservation, helping to prevent their extinction; in contrast, HFP growth and expansion has a dramatically negative effect on primate species worldwide. Our findings support predictions that the continued negative impact of anthropogenic pressures on natural habitats may lead to a significant decline in global primate species richness, and likely, species extirpations. We advocate for stronger national and international policy frameworks promoting alternative/sustainable livelihoods and reducing persistent anthropogenic pressures to help mitigate the extinction risk of the world's primate species.


Assuntos
Comércio , Conservação dos Recursos Naturais , Humanos , Animais , Internacionalidade , Primatas , Ecossistema , Espécies em Perigo de Extinção , Extinção Biológica , Biodiversidade
5.
PLoS One ; 16(10): e0255555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34613994

RESUMO

The jaguar (Panthera onca) is one of the most threatened carnivores in the Americas. Despite a long history of research on this charismatic species, to date there have been few systematic efforts to assess its population size and status in most countries across its distribution range. We present here the results of the two National Jaguar Surveys for Mexico, the first national censuses in any country within the species distribution. We estimated jaguar densities from field data collected at 13 localities in 2008-2010 (2010 hereafter) and 11 localities in 2016-2018 (2018 hereafter). We used the 2010 census results as the basis to develop a National Jaguar Conservation Strategy that identified critical issues for jaguar conservation in Mexico. We worked with the Mexican government to implement the conservation strategy and then evaluated its effectivity. To compare the 2010 and 2018 results, we estimated the amount of jaguar-suitable habitat in the entire country based on an ecological niche model for both periods. Suitable jaguar habitat covered ~267,063 km2 (13.9% of the country's territory) in 2010 and ~ 288,890 km2 (~14.8% of the country's territory) in 2018. Using the most conservative density values for each priority region, we estimated jaguar densities for both the high and low suitable habitats. The total jaguar population was estimated in ~4,000 individuals for 2010 census and ~4,800 for the 2018 census. The Yucatan Peninsula was the region with the largest population, around 2000 jaguars, in both censuses. Our promising results indicate that the actions we proposed in the National Jaguar Conservation Strategy, some of which have been implemented working together with the Federal Government, other NGO's, and land owners, are improving jaguar conservation in Mexico. The continuation of surveys and monitoring programs of the jaguar populations in Mexico will provide accurate information to design and implement effective, science-based conservation measures to try to ensure that robust jaguar populations remain a permanent fixture of Mexico's natural heritage.


Assuntos
Conservação dos Recursos Naturais/legislação & jurisprudência , Panthera/fisiologia , Política Pública/legislação & jurisprudência , Animais , Ecossistema , México , Densidade Demográfica
7.
J Anim Ecol ; 84(3): 851-860, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25355656

RESUMO

Different hypotheses (geographical, ecological, evolutionary or a combination of them) have been suggested to account for the spatial variation in species richness. However, the relative importance of environment and human impacts in explaining these patterns, either globally or at the biogeographical region level, remains largely unexplored. Here, we jointly evaluate how current environmental conditions and human impacts shape global and regional gradients of species richness in terrestrial mammals. We processed IUCN global distributional data for 3939 mammal species and a set of seven environmental and two human impact variables at a spatial resolution of 96.5 × 96.5 km. We used simple, multiple and partial regression techniques to evaluate environmental and human effects on species richness. Actual evapotranspiration (AET) is the main driver of mammal species richness globally. Together with our results at the biogeographical realm level, this lends strong support for the water-energy hypothesis (i.e. global diversity gradients are best explained by the interaction of water and energy, with a latitudinal shift in the relative importance of ambient energy vs. water availability as we move from the poles to the equator). While human effects on species richness are not easily detected at a global scale due to the large proportion of shared variance with the environment, these effects significantly emerge at the regional level. In the Nearctic, Palearctic and Oriental regions, the independent contribution of human impacts is almost as important as current environmental conditions in explaining richness patterns. The intersection of human impacts with climate drives the geographical variation in mammal species richness in the Palearctic, Nearctic and Oriental regions. Using a human accessibility variable, we show, for the first time, that the zones most accessible to humans are often those where we find lower mammal species richness.


Assuntos
Biodiversidade , Clima , Mamíferos , Animais , Fenômenos Ecológicos e Ambientais , Ecossistema , Geografia , Modelos Biológicos , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...