Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Cancer Lett ; 592: 216950, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38729555

RESUMO

Malignant pleural mesothelioma is a rare and lethal cancer caused by exposure to asbestos. The highly inflammatory environment caused by fibers accumulation forces cells to undergo profound adaptation to gain survival advantages. Prioritizing the synthesis of essential transcripts is an efficient mechanism coordinated by multiple molecules, including long non-coding RNAs. Enhancing the knowledge about these mechanisms is an essential weapon in combating mesothelioma. Linc00941 correlates to bad prognosis in various cancers, but it is reported to partake in distinct and apparently irreconcilable processes. In this work, we report that linc00941 supports the survival and aggressiveness of mesothelioma cells by influencing protein synthesis and ribosome biogenesis. Linc00941 binds to the translation initiation factor eIF4G, promoting the selective protein synthesis of cMYC, which, in turn, enhances the expression of key genes involved in translation. We analyzed a retrospective cohort of 97 mesothelioma patients' samples from our institution, revealing that linc00941 expression strongly correlates with reduced survival probability. This discovery clarifies linc00941's role in mesothelioma and proposes a unified mechanism of action for this lncRNA involving the selective translation of essential oncogenes, reconciling the discrepancies about its function.


Assuntos
Fator de Iniciação Eucariótico 4G , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc , RNA Longo não Codificante , Humanos , Mesotelioma Maligno/genética , Mesotelioma Maligno/patologia , Mesotelioma Maligno/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Mesotelioma/genética , Mesotelioma/patologia , Mesotelioma/metabolismo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Neoplasias Pleurais/metabolismo , Ribossomos/metabolismo , Ribossomos/genética , Estudos Retrospectivos , Prognóstico , Proliferação de Células
2.
Nucleic Acids Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597676

RESUMO

Chromatin modifiers are emerging as major determinants of many types of cancers, including Anaplastic Large Cell Lymphomas (ALCL), a family of highly heterogeneous T-cell lymphomas for which therapeutic options are still limited. HELLS is a multifunctional chromatin remodeling protein that affects genomic instability by participating in the DNA damage response. Although the transcriptional function of HELLS has been suggested, no clues on how HELLS controls transcription are currently available. In this study, by integrating different multi-omics and functional approaches, we characterized the transcriptional landscape of HELLS in ALCL. We explored the clinical impact of its transcriptional program in a large cohort of 44 patients with ALCL. We demonstrated that HELLS, loaded at the level of intronic regions of target promoters, facilitates RNA Polymerase II (RNAPII) progression along the gene bodies by reducing the persistence of co-transcriptional R-loops and promoting DNA damage resolution. Importantly, selective knockdown of HELLS sensitizes ALCL cells to different chemotherapeutic agents, showing a synergistic effect. Collectively, our work unveils the role of HELLS in acting as a gatekeeper of ALCL genome stability providing a rationale for drug design.

3.
Nat Commun ; 15(1): 2567, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519469

RESUMO

Non-small-cell lung carcinoma (NSCLC) is the most common lung cancer and one of the pioneer tumors in which immunotherapy has radically changed patients' outcomes. However, several issues are emerging and their implementation is required to optimize immunotherapy-based protocols. In this work, we investigate the ability of the Bromodomain and Extra-Terminal protein inhibitors (BETi) to stimulate a proficient anti-tumor immune response toward NSCLC. By using in vitro, ex-vivo, and in vivo models, we demonstrate that these epigenetic drugs specifically enhance Natural Killer (NK) cell cytotoxicity. BETi down-regulate a large set of NK inhibitory receptors, including several immune checkpoints (ICs), that are direct targets of the transcriptional cooperation between the BET protein BRD4 and the transcription factor SMAD3. Overall, BETi orchestrate an epigenetic reprogramming that leads to increased recognition of tumor cells and the killing ability of NK cells. Our results unveil the opportunity to exploit and repurpose these drugs in combination with immunotherapy.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Células Matadoras Naturais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteínas que Contêm Bromodomínio
4.
Expert Opin Pharmacother ; 25(4): 421-434, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38503547

RESUMO

INTRODUCTION: Selinexor, an XPO1 inhibitor, has emerged as a promising therapeutic option in the challenging landscape of relapsed/refractory multiple myeloma (RRMM). AREAS COVERED: This article provides a review of selinexor, with a focus on available clinical studies involving MM patients and its safety profile. Clinical trials, such as STORM and BOSTON, have demonstrated its efficacy, particularly in combination regimens, showcasing notable overall response rates (ORR) and prolonged median progressionfree survival (mPFS). Selinexor's versatility is evident across various combinations, including carfilzomibdexamethasone (XKd), lenalidomidedexamethasone (XRd), and pomalidomidedexamethasone (XPd), with efficacy observed even in tripleclass refractory and highrisk patient populations. However, challenges, including resistance mechanisms and adverse events, necessitate careful management. Realworld evidence also underscores selinexor's effectiveness in RRMM, though dose adjustments and supportive measures remain crucial. Ongoing trials are exploring selinexor in diverse combinations and settings, including pomalidomidenaïve patients and postautologous stem cell transplant (ASCT) maintenance. EXPERT OPINION: The evolving landscape of selinexor's role in the sequencing of treatment for RRMM, its potential in highrisk patients, including those with extramedullary disease, as revealed in the most recent international meetings, and ongoing investigations signal a dynamic era in myeloma therapeutics. Selinexor emerges as a pivotal component in multidrug strategies and innovative combinations.


Assuntos
Hidrazinas , Mieloma Múltiplo , Triazóis , Mieloma Múltiplo/tratamento farmacológico , Humanos , Hidrazinas/uso terapêutico , Hidrazinas/efeitos adversos , Triazóis/uso terapêutico , Triazóis/efeitos adversos , Carioferinas/antagonistas & inibidores , Proteína Exportina 1 , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Intervalo Livre de Progressão
5.
Cancer Immunol Res ; 12(1): 120-134, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-37856875

RESUMO

Neoadjuvant chemotherapy (NAC) alone or combined with target therapies represents the standard of care for localized triple-negative breast cancer (TNBC). However, only a fraction of patients have a response, necessitating better understanding of the complex elements in the TNBC ecosystem that establish continuous and multidimensional interactions. Resolving such complexity requires new spatially-defined approaches. Here, we used spatial transcriptomics to investigate the multidimensional organization of TNBC at diagnosis and explore the contribution of each cell component to response to NAC. Starting from a consecutive retrospective series of TNBC cases, we designed a case-control study including 24 patients with TNBC of which 12 experienced a pathologic complete response (pCR) and 12 no-response or progression (pNR) after NAC. Over 200 regions of interest (ROI) were profiled. Our computational approaches described a model that recapitulates clinical response to therapy. The data were validated in an independent cohort of patients. Differences in the transcriptional program were detected in the tumor, stroma, and immune infiltrate comparing patients with a pCR with those with pNR. In pCR, spatial contamination between the tumor mass and the infiltrating lymphocytes was observed, sustained by a massive activation of IFN-signaling. Conversely, pNR lesions displayed increased pro-angiogenetic signaling and oxygen-based metabolism. Only modest differences were observed in the stroma, revealing a topology-based functional heterogeneity of the immune infiltrate. Thus, spatial transcriptomics provides fundamental information on the multidimensionality of TNBC and allows an effective prediction of tumor behavior. These results open new perspectives for the improvement and personalization of therapeutic approaches to TNBCs.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Estudos de Casos e Controles , Terapia Neoadjuvante/métodos , Prognóstico , Estudos Retrospectivos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Feminino
6.
Cell Death Dis ; 14(11): 752, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980331

RESUMO

Long non-coding RNAs (lncRNAs) are transcripts without coding potential that are pervasively expressed from the genome and have been increasingly reported to play crucial roles in all aspects of cell biology. They have been also heavily implicated in cancer development and progression, with both oncogenic and tumor suppressor functions. In this work, we identified and characterized a novel lncRNA, TAZ-AS202, expressed from the TAZ genomic locus and exerting pro-oncogenic functions in non-small cell lung cancer. TAZ-AS202 expression is under the control of YAP/TAZ-containing transcriptional complexes. We demonstrated that TAZ-AS202 is overexpressed in lung cancer tissue, compared with surrounding lung epithelium. In lung cancer cell lines TAZ-AS202 promotes cell migration and cell invasion. TAZ-AS202 regulates the expression of a set of genes belonging to cancer-associated pathways, including WNT and EPH-Ephrin signaling. The molecular mechanism underlying TAZ-AS202 function does not involve change of TAZ expression or activity, but increases the protein level of the transcription factor E2F1, which in turn regulates the expression of a large set of target genes, including the EPHB2 receptor. Notably, the silencing of both E2F1 and EPHB2 recapitulates TAZ-AS202 silencing cellular phenotype, indicating that they are essential mediators of its activity. Overall, this work unveiled a new regulatory mechanism that, by increasing E2F1 protein, modifies the non-small cell lung cancer cells transcriptional program, leading to enhanced aggressiveness features. The TAZ-AS202/E2F1/EPHB2 axis may be the target for new therapeutic strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Efrinas/genética , Efrinas/metabolismo , Linhagem Celular Tumoral , Pulmão/metabolismo , Regulação Neoplásica da Expressão Gênica/genética
7.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834003

RESUMO

The NOTCH ligands JAG1 and JAG2 have been correlated in vitro with multiple myeloma (MM) cell proliferation, drug resistance, self-renewal and a pathological crosstalk with the tumor microenvironment resulting in angiogenesis and osteoclastogenesis. These findings suggest that a therapeutic approach targeting JAG ligands might be helpful for the care of MM patients and lead us to explore the role of JAG1 and JAG2 in a MM in vivo model and primary patient samples. JAG1 and JAG2 protein expression represents a common feature in MM cell lines; therefore, we assessed their function through JAG1/2 conditional silencing in a MM xenograft model. We observed that JAG1 and JAG2 showed potential as therapeutic targets in MM, as their silencing resulted in a reduction in the tumor burden. Moreover, JAG1 and JAG2 protein expression in MM patients was positively correlated with the presence of MM cells in patients' bone marrow biopsies. Finally, taking advantage of the Multiple Myeloma Research Foundation (MMRF) CoMMpass global dataset, we showed that JAG2 gene expression level was a predictive biomarker associated with patients' overall survival and progression-free survival, independently from other main molecular or clinical features. Overall, these results strengthened the rationale for the development of a JAG1/2-tailored approach and the use of JAG2 as a predictive biomarker in MM.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Biomarcadores , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Ligantes , Microambiente Tumoral
8.
Front Oncol ; 13: 1198992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719021

RESUMO

Analyzing gene expression profiles (GEP) through artificial intelligence provides meaningful insight into cancer disease. This study introduces DeepSHAP Autoencoder Filter for Genes Selection (DSAF-GS), a novel deep learning and explainable artificial intelligence-based approach for feature selection in genomics-scale data. DSAF-GS exploits the autoencoder's reconstruction capabilities without changing the original feature space, enhancing the interpretation of the results. Explainable artificial intelligence is then used to select the informative genes for chronic lymphocytic leukemia prognosis of 217 cases from a GEP database comprising roughly 20,000 genes. The model for prognosis prediction achieved an accuracy of 86.4%, a sensitivity of 85.0%, and a specificity of 87.5%. According to the proposed approach, predictions were strongly influenced by CEACAM19 and PIGP, moderately influenced by MKL1 and GNE, and poorly influenced by other genes. The 10 most influential genes were selected for further analysis. Among them, FADD, FIBP, FIBP, GNE, IGF1R, MKL1, PIGP, and SLC39A6 were identified in the Reactome pathway database as involved in signal transduction, transcription, protein metabolism, immune system, cell cycle, and apoptosis. Moreover, according to the network model of the 3D protein-protein interaction (PPI) explored using the NetworkAnalyst tool, FADD, FIBP, IGF1R, QTRT1, GNE, SLC39A6, and MKL1 appear coupled into a complex network. Finally, all 10 selected genes showed a predictive power on time to first treatment (TTFT) in univariate analyses on a basic prognostic model including IGHV mutational status, del(11q) and del(17p), NOTCH1 mutations, ß2-microglobulin, Rai stage, and B-lymphocytosis known to predict TTFT in CLL. However, only IGF1R [hazard ratio (HR) 1.41, 95% CI 1.08-1.84, P=0.013), COL28A1 (HR 0.32, 95% CI 0.10-0.97, P=0.045), and QTRT1 (HR 7.73, 95% CI 2.48-24.04, P<0.001) genes were significantly associated with TTFT in multivariable analyses when combined with the prognostic factors of the basic model, ultimately increasing the Harrell's c-index and the explained variation to 78.6% (versus 76.5% of the basic prognostic model) and 52.6% (versus 42.2% of the basic prognostic model), respectively. Also, the goodness of model fit was enhanced (χ2 = 20.1, P=0.002), indicating its improved performance above the basic prognostic model. In conclusion, DSAF-GS identified a group of significant genes for CLL prognosis, suggesting future directions for bio-molecular research.

9.
Mol Oncol ; 17(12): 2728-2742, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37408506

RESUMO

Mortality from vmelanoma is associated with metastatic disease, but the mechanisms leading to spreading of the cancer cells remain obscure. Spatial profiling revealed that melanoma is characterized by a high degree of heterogeneity, which is established by the ability of melanoma cells to switch between different phenotypical stages. This plasticity, likely a heritage from embryonic pathways, accounts for a relevant part of the metastatic potential of these lesions, and requires the rapid and efficient reorganization of the transcriptional landscape of melanoma cells. A large part of the non-coding genome cooperates to control gene expression, specifically through the activity of enhancers (ENHs). In this study, we aimed to identify ex vivo the network of active ENHs and to outline their cooperative interactions in supporting transcriptional adaptation during melanoma metastatic progression. We conducted a genome-wide analysis to map active ENHs distribution in a retrospective cohort of 39 melanoma patients, comparing the profiles obtained in primary (N = 19) and metastatic (N = 20) melanoma lesions. Unsupervised clustering showed that the profile for acetylated histone H3 at lysine 27 (H3K27ac) efficiently segregates lesions into three different clusters corresponding to progressive stages of the disease. We reconstructed the map of super-ENHs (SEs) and cooperative ENHs that associate with metastatic progression in melanoma, which showed that cooperation among regulatory elements is a mandatory requirement for transcriptional plasticity. We also showed that these elements carry out specialized and non-redundant functions, and indicated the existence of a hierarchical organization, with SEs on top as masterminds of the entire transcriptional program and classical ENHs as executors. By providing an innovative vision of how the chromatin landscape of melanoma works during metastatic spreading, our data also point out the need to integrate functional profiling in the analysis of cancer lesions to increase definition and improve interpretation of tumor heterogeneity.


Assuntos
Melanoma , Humanos , Melanoma/genética , Melanoma/metabolismo , Estudos Retrospectivos , Histonas/metabolismo , Cromatina
10.
Mod Pathol ; 36(9): 100244, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37307881

RESUMO

Due to the lack of a standardized tool for risk-based stratification, the International Medullary Carcinoma Grading System (IMTCGS) has been proposed for medullary thyroid carcinomas (MTCs) based on necrosis, mitosis, and Ki67. Similarly, a risk stratification study using the Surveillance, Epidemiology, and End Results (SEER) database highlighted significant differences in MTCs in terms of clinical-pathological variables. We aimed to validate both the IMTCGS and SEER-based risk table on 66 MTC cases, with special attention to angioinvasion and the genetic profile. We found a significant association between the IMTCGS and survival because patients classified as high-grade had a lower event-free survival probability. Angioinvasion was also found to be significantly correlated with metastasis and death. Applying the SEER-based risk table, patients classified either as intermediate- or high-risk had a lower survival rate than low-risk patients. In addition, high-grade IMTCGS cases had a higher average SEER-based risk score than low-grade cases. Moreover, when we explored angioinvasion in correlation with the SEER-based risk table, patients with angioinvasion had a higher average SEER-based score than patients without angioinvasion. Deep sequencing analysis found that 10 out of 20 genes frequently mutated in MTCs belonged to a specific functional class, namely chromatin organization, and function, which may be responsible for the MTC heterogeneity. In addition, the genetic signature identified 3 main clusters; cases belonging to cluster II displayed a significantly higher number of mutations and higher tumor mutational burden, suggesting increased genetic instability, but cluster I was associated with the highest number of negative events. In conclusion, we confirmed the prognostic performance of the IMTCGS and SEER-based risk score, showing that patients classified as high-grade had a lower event-free survival probability. We also underline that angioinvasion has a significant prognostic role, which has not been incorporated in previous risk scores.


Assuntos
Carcinoma Medular , Carcinoma Neuroendócrino , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Medular/genética , Perfil Genético , Carcinoma Neuroendócrino/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Prognóstico , Fatores de Risco
11.
Cancers (Basel) ; 15(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37296915

RESUMO

BACKGROUND: Primary ovarian leiomyosarcoma is a very rare malignancy characterized by unclear management and poor survival. We reviewed all the cases of primary ovarian leiomyosarcoma to identify prognostic factors and the best treatment. METHODS: We collected and analyzed the articles published in the English literature regarding primary ovarian leiomyosarcoma from January 1951 to September 2022, using PubMed research. Clinical and pathological characteristics, different treatments and outcomes were analyzed. RESULTS: 113 cases of primary ovarian leiomyosarcoma were included. Most patients received surgical resection, associated with lymphadenectomy in 12.5% of cases. About 40% of patients received chemotherapy. Follow-up information was available for 100/113 (88.5%) patients. Stage and mitotic count were confirmed to affect survival, and lymphadenectomy and chemotherapy were associated with a better survival rate. A total of 43.4% of patients relapsed, and their mean disease-free survival was 12.5 months. CONCLUSIONS: Primary ovarian leiomyosarcomas are more common in women in their 50s (mean age 53 years). Most of them are at an early stage at presentation. Advanced stage and mitotic count showed a detrimental effect on survival. Surgical excision associated with lymphadenectomy and chemotherapy are associated with increased survival. An international registry could help collect clear and reliable data to standardize the diagnosis and treatment.

12.
Haematologica ; 108(12): 3333-3346, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37381763

RESUMO

Long non-coding RNA (lncRNA) are emerging as powerful and versatile regulators of transcriptional programs and distinctive biomarkers of progression of T-cell lymphoma. Their role in the aggressive anaplastic lymphoma kinase-negative (ALK-) subtype of anaplastic large cell lymphoma (ALCL) has been elucidated only in part. Starting from our previously identified ALCL-associated lncRNA signature and performing digital gene expression profiling of a retrospective cohort of ALCL, we defined an 11 lncRNA signature able to discriminate among ALCL subtypes. We selected a not previously characterized lncRNA, MTAAT, with preferential expression in ALK- ALCL, for molecular and functional studies. We demonstrated that lncRNA MTAAT contributes to an aberrant mitochondrial turnover restraining mitophagy and promoting cellular proliferation. Functionally, lncRNA MTAAT acts as a repressor of a set of genes related to mitochondrial quality control via chromatin reorganization. Collectively, our work demonstrates the transcriptional role of lncRNA MTAAT in orchestrating a complex transcriptional program sustaining the progression of ALK- ALCL.


Assuntos
Linfoma Anaplásico de Células Grandes , Linfoma de Células T Periférico , RNA Longo não Codificante , Humanos , Receptores Proteína Tirosina Quinases/genética , Quinase do Linfoma Anaplásico/genética , RNA Longo não Codificante/genética , Mitofagia/genética , Estudos Retrospectivos , Linfoma Anaplásico de Células Grandes/patologia
13.
Int J Gynaecol Obstet ; 163(2): 679-688, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37358270

RESUMO

OBJECTIVE: To assess compliance with the 2019 regional recommendation to centralize epithelial ovarian cancer (EOC) patients and to assess whether the COVID-19 pandemic has affected the quality of care for EOC patients. METHODS: We compared data from EOC patients treated before the introduction of the 2019 regional recommendation (2018-2019) with data obtained from EOC patients treated after the regional recommendation was adopted during the first 2 years of the COVID-19 pandemic (2020-2021). Data were retrieved from the Optimal Ovarian Cancer Pathway records. R software version 4.1.2 (the R Foundation for Statistical Computing, Vienna, Austria) was used for the statistical analysis. RESULTS: 251 EOC patients were centralized. The number of EOC patients centralized increased from 2% to 49% despite the COVID-19 pandemic. During the COVID-19 pandemic, there was an increase in the use of neoadjuvant chemotherapy and interval debulking surgery. There was an improvement in the percentage of Stage III patients without gross residual disease following both primary and interval debulking surgery. The percentage of EOC cases discussed by the multidisciplinary tumor board (MTB) increased from 66% to 89% of cases. CONCLUSION: Despite the COVID-19 pandemic, centralization has increased and the quality of care has been preserved thanks to the MTB.


Assuntos
COVID-19 , Carcinoma Epitelial do Ovário , Neoplasias Ovarianas , Feminino , Humanos , Carcinoma Epitelial do Ovário/terapia , Carcinoma Epitelial do Ovário/patologia , Quimioterapia Adjuvante , Terapia Neoadjuvante , Estadiamento de Neoplasias , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/tratamento farmacológico , Pandemias , Estudos Retrospectivos , Qualidade da Assistência à Saúde , Acessibilidade aos Serviços de Saúde
14.
Cells ; 12(5)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36899930

RESUMO

BACKGROUND: Endometrial cancer (EC) is the most common gynecologic tumor and the world's fourth most common cancer in women. Most patients respond to first-line treatments and have a low risk of recurrence, but refractory patients, and those with metastatic cancer at diagnosis, remain with no treatment options. Drug repurposing aims to discover new clinical indications for existing drugs with known safety profiles. It provides ready-to-use new therapeutic options for highly aggressive tumors for which standard protocols are ineffective, such as high-risk EC. METHODS: Here, we aimed at defining new therapeutic opportunities for high-risk EC using an innovative and integrated computational drug repurposing approach. RESULTS: We compared gene-expression profiles, from publicly available databases, of metastatic and non-metastatic EC patients being metastatization the most severe feature of EC aggressiveness. A comprehensive analysis of transcriptomic data through a two-arm approach was applied to obtain a robust prediction of drug candidates. CONCLUSIONS: Some of the identified therapeutic agents are already successfully used in clinical practice to treat other types of tumors. This highlights the potential to repurpose them for EC and, therefore, the reliability of the proposed approach.


Assuntos
Reposicionamento de Medicamentos , Neoplasias do Endométrio , Humanos , Feminino , Reposicionamento de Medicamentos/métodos , Reprodutibilidade dos Testes , Neoplasias do Endométrio/patologia , Perfilação da Expressão Gênica , Transcriptoma
15.
Cell Death Dis ; 14(2): 99, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765037

RESUMO

Anaplastic Thyroid Cancer (ATC) is the most aggressive and de-differentiated subtype of thyroid cancer. Many studies hypothesized that ATC derives from Differentiated Thyroid Carcinoma (DTC) through a de-differentiation process triggered by specific molecular events still largely unknown. E2F7 is an atypical member of the E2F family. Known as cell cycle inhibitor and keeper of genomic stability, in specific contexts its function is oncogenic, guiding cancer progression. We performed a meta-analysis on 279 gene expression profiles, from 8 Gene Expression Omnibus patient samples datasets, to explore the causal relationship between DTC and ATC. We defined 3 specific gene signatures describing the evolution from normal thyroid tissue to DTC and ATC and validated them in a cohort of human surgically resected ATCs collected in our Institution. We identified E2F7 as a key player in the DTC-ATC transition and showed in vitro that its down-regulation reduced ATC cells' aggressiveness features. RNA-seq and ChIP-seq profiling allowed the identification of the E2F7 specific gene program, which is mainly related to cell cycle progression and DNA repair ability. Overall, this study identified a signature describing DTC de-differentiation toward ATC subtype and unveiled an E2F7-dependent transcriptional program supporting this process.


Assuntos
Adenocarcinoma , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Adenocarcinoma/genética , Diferenciação Celular/genética , Oncogenes/genética , Fator de Transcrição E2F7/genética
16.
J Exp Clin Cancer Res ; 42(1): 7, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36604676

RESUMO

BACKGROUND: Triple-Negative Breast Cancer (TNBC) is a subtype of breast cancer that differs from other types of breast cancers in the faster spread and worse outcome. TNBC presented limited treatment options. BET (Bromodomain and extra-terminal domain) proteins are epigenetic readers that control the expression of different oncogenic proteins, and their inhibition (BETi) is considered a promising anti-cancer strategy. Recent evidence demonstrated the involvement of BET proteins in regulation of metabolic processes. METHODS: MDA-MB231 cells treated with JQ1 followed by RNA-sequencing analysis showed altered expression of lipid metabolic genes; among these, we focused on ATGL, a lipase required for efficient mobilization of triglyceride. Different in vitro approaches were performed to validate the RNA-sequencing data (qRT-PCR, immunofluorescence and flow cytometry). NMR (Nuclear Magnetic Resonance) was used to analyze the lipid reprogramming upon treatment. ATGL expression was determined by immunoblot and qRT-PCR, and the impact of ATGL function or protein knockdown, alone and in combination with BETi, was assessed by analyzing cell proliferation, mitochondrial function, and metabolic activity in TNBC and non-TNBC cells culture models. RESULTS: TNBC cells treated with two BETi markedly increased ATGL expression and lipolytic function and decreased intracellular lipid content in a dose and time-dependent manner. The intracellular composition of fatty acids (FAs) after BETi treatment reflected a significant reduction in neutral lipids. The short-chain FA propionate entered directly into the mitochondria mimicking ATGL activity. ATGL KD (knockdown) modulated the levels of SOD1 and CPT1a decreasing ROS and helped to downregulate the expression of mitochondrial ß-oxidation genes in favor of the upregulation of glycolytic markers. The enhanced glycolysis is reflected by the increased of the mitochondrial activity (MTT assay). Finally, we found that after BETi treatment, the FoxO1 protein is upregulated and binds to the PNPLA2 promoter leading to the induction of ATGL. However, FoxO1 only partially prompted the induction of ATGL expression by BETi. CONCLUSIONS: The anti-proliferative effect achieved by BETi is helped by ATGL mediating lipolysis. This study showed that BETi altered the mitochondrial dynamics taking advantage of ATGL function to induce cell cycle arrest and cell death. Schematic representation of BETi mechanism of action on ATGL in TNBC cells. BETi induce the expression of FoxO1 and ATGL, lowering the expression of G0G2, leading to a switch in metabolic status. The induced expression of ATGL leads to increased lipolysis and a decrease in lipid droplet content and bioavailability of neutral lipid. At the same time, the mitochondria are enriched with fatty acids. This cellular status inhibits cell proliferation and increases ROS production and mitochondrial stress. Interfering for ATGL expression, the oxidative phenotypic status mildly reverted to a glycolytic status where neutral lipids are stored into lipid droplets with a consequent reduction of oxidative stress in the mitochondrial.


Assuntos
Aciltransferases , Lipase , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Ácidos Graxos , Lipase/genética , Lipase/metabolismo , Lipídeos , Proteínas , Espécies Reativas de Oxigênio , Neoplasias de Mama Triplo Negativas/patologia , Aciltransferases/genética , Aciltransferases/metabolismo
17.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555330

RESUMO

Multiple myeloma (MM) has a highly heterogeneous genetic background, which complicates its molecular tracking over time. Nevertheless, each MM patient's malignant plasma cells (PCs) share unique V(D)J rearranged sequences at immunoglobulin loci, which represent ideal disease biomarkers. Because the tumor-specific V(D)J sequence is highly expressed in bulk RNA in MM patients, we wondered whether it can be identified by single-cell RNA sequencing (scRNA-seq). To this end we analyzed CD138+ cells purified from bone marrow aspirates of 19 samples with PC dyscrasias by both a standard method based on bulk DNA and by an implementation of the standard 10x Genomics protocol to detect expressed V(D)J sequences. A dominant clonotype was easily identified in each sample, accounting on average for 83.65% of V(D)J-rearranged cells. Compared with standard methods, scRNA-seq analysis proved highly concordant and even more effective in identifying clonal productive rearrangements, by-passing limitations related to the misannealing of consensus primers in hypermutated regions. We next validated its accuracy to track 5 clonal cells with absolute sensitivity in a virtual sample containing 3180 polyclonal cells. This shows that single-cell V(D)J analysis may be used to find rare clonal cells, laying the foundations for functional single-cell dissection of minimal residual disease.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Cadeias Pesadas de Imunoglobulinas/genética , Recombinação V(D)J , Rearranjo Gênico , Análise de Sequência de RNA
18.
Discov Oncol ; 13(1): 124, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367609

RESUMO

PURPOSE: The NONO protein belongs to the multifunctional family of proteins that can bind DNA, RNA and proteins. It is located in the nucleus of most mammalian cells and can affect almost every step of gene regulation. Dysregulation of NONO has been found in many types of cancer; however, data regarding its expression and relevance in Multiple Myeloma (MM) are virtually absent. METHODS: We took advantage of a large cohort of MM patients enrolled in the Multiple Myeloma Research Foundation CoMMpass study to elucidate better the clinical and biological relevance of NONO expression in the context of the MM genomic landscape and transcriptome. RESULTS: NONO is overexpressed in pathological samples compared to normal controls. In addition, higher NONO expression levels are significant independent prognostic markers of worse clinical outcome in MM. Our results indicate that NONO deregulation may play a pathogenetic role in MM by affecting cell cycle, DNA repair mechanisms, and influencing translation by regulating ribosome biogenesis and assembly. Furthermore, our data suggest NONO involvement in the metabolic reprogramming of glucose metabolism from respiration to aerobic glycolysis, a phenomenon known as the 'Warburg Effect' that supports rapid cancer cell growth, survival, and invasion. CONCLUSION: These findings strongly support the need of future investigations for the understanding of the mechanisms of deregulation and the biological role and activity of NONO in MM.

19.
NAR Cancer ; 4(3): zcac024, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35910692

RESUMO

Malignant pleural mesothelioma (MPM) is a rare and incurable cancer, which incidence is increasing in many countries. MPM escapes the classical genetic model of cancer evolution, lacking a distinctive genetic fingerprint. Omics profiling revealed extensive heterogeneity failing to identify major vulnerabilities and restraining development of MPM-oriented therapies. Here, we performed a multilayered analysis based on a functional genome-wide CRISPR/Cas9 screening integrated with patients molecular and clinical data, to identify new non-genetic vulnerabilities of MPM. We identified a core of 18 functionally-related genes as essential for MPM cells. The chromatin reader KAP1 emerged as a dependency of MPM. We showed that KAP1 supports cell growth by orchestrating the expression of a G2/M-specific program, ensuring mitosis correct execution. Targeting KAP1 transcriptional function, by using CDK9 inhibitors resulted in a dramatic loss of MPM cells viability and shutdown of the KAP1-mediated program. Validation analysis on two independent MPM-patients sets, including a consecutive, retrospective cohort of 97 MPM, confirmed KAP1 as new non-genetic dependency of MPM and proved the association of its dependent gene program with reduced patients' survival probability. Overall these data: provided new insights into the biology of MPM delineating KAP1 and its target genes as building blocks of its clinical aggressiveness.

20.
Blood Adv ; 6(20): 5593-5612, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-35819446

RESUMO

Chronic lymphocytic leukemia (CLL) cells express the interleukin-23 receptor (IL-23R) chain, but the expression of the complementary IL-12Rß1 chain requires cell stimulation via surface CD40 molecules (and not via the B-cell receptor [BCR]). This stimulation induces the expression of a heterodimeric functional IL-23R complex and the secretion of IL-23, initiating an autocrine loop that drives leukemic cell expansion. Based on the observation in 224 untreated Binet stage A patients that the cases with the lowest miR-146b-5p concentrations had the shortest time to first treatment (TTFT), we hypothesized that miR-146b-5p could negatively regulate IL-12Rß1 side chain expression and clonal expansion. Indeed, miR-146b-5p significantly bound to the 3'-UTR region of the IL-12Rß1 mRNA in an in vitro luciferase assay. Downregulation of miR-146b-5p with specific miRNA inhibitors in vitro led to the upregulation of the IL-12Rß1 side chain and expression of a functional IL-23R complex similar to that observed after stimulation of the CLL cell through the surface CD40 molecules. Expression of miR-146b-5p with miRNA mimics in vitro inhibited the expression of the IL-23R complex after stimulation with CD40L. Administration of a miR-146b-5p mimic to NSG mice, successfully engrafted with CLL cells, caused tumor shrinkage, with a reduction of leukemic nodules and of IL-12Rß1-positive CLL cells in the spleen. Our findings indicate that IL-12Rß1 expression, a crucial checkpoint for the functioning of the IL-23 and IL-23R complex loop, is under the control of miR-146b-5p, which may represent a potential target for therapy since it contributes to the CLL pathogenesis. This trial is registered at www.clinicaltrials.gov as NCT00917540.


Assuntos
Leucemia Linfocítica Crônica de Células B , MicroRNAs , Animais , Ligante de CD40 , Interleucina-23/genética , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro , Receptores de Antígenos de Linfócitos B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...