Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 150(10): 104504, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30876364

RESUMO

A set of new ab initio force fields for aqueous [AnO2]2+/+ (An = Np(vi,v), Pu(vi), Am(vi)) has been developed using the Hydrated Ion (HI) model methodology previously used for [UO2]2+. Except for the non-electrostatic contribution of the HI-bulk water interaction, the interaction potentials are individually parameterized. Translational diffusion coefficients, hydration enthalpies, and vibrational normal mode frequencies were calculated from the MD simulations. Physico-chemical properties satisfactorily agree with experiments validating the robustness of the force field strategy. The solvation dynamics and structure for all hexavalent actinoids are extremely similar and resemble our previous analysis of the uranyl cation. This supports the idea of using the uranyl cation as a reference for the study of other minor actinyls. The comparison between the NpO2 2+ and NpO2 + hydration only provides significant differences in first and second shell distances and second-shell mean residence times. We propose a single general view of the [AnO2]2+/+ hydration structure: aqueous actinyls are amphiphilic anisotropic solutes which are equatorially conventional spherically symmetric cations capped at the poles by clathrate-like water structures.

2.
J Chem Phys ; 145(22): 224502, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27984897

RESUMO

A new ab initio interaction potential based on the hydrated ion concept has been developed to obtain the structure, energetics, and dynamics of the hydration of uranyl in aqueous solution. It is the first force field that explicitly parameterizes the interaction of the uranyl hydrate with bulk water molecules to accurately define the second-shell behavior. The [UO2(H2O)5]2+ presents a first hydration shell U-O average distance of 2.46 Å and a second hydration shell peak at 4.61 Å corresponding to 22 molecules using a coordination number definition based on a multisite solute cavity. The second shell solvent molecules have longer mean residence times than those corresponding to the divalent monatomic cations. The axial regions are relatively de-populated, lacking direct hydrogen bonding to apical oxygens. Angle-solved radial distribution functions as well as the spatial distribution functions show a strong anisotropy in the ion hydration. The [UO2(H2O)5]2+ solvent structure may be regarded as a combination of a conventional second hydration shell in the equatorial and bridge regions, and a clathrate-like low density region in the axial region. Translational diffusion coefficient, hydration enthalpy, power spectra of the main vibrational modes, and the EXAFS spectrum simulated from molecular dynamics trajectories agree fairly well with the experiment.

3.
J Phys Chem B ; 111(28): 8223-33, 2007 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-17583938

RESUMO

Quantitative determination of the hydration structure of hexaaquairidium(III), [Ir(H2O)6]3+, in aqueous solution, the most inert aqua ion known, has been achieved for the first time by a combined experimental-theoretical approach employing X-ray absorption spectroscopy and molecular dynamics (MD) simulations. The Ir LIII-edge extended X-ray absorption fine structure (EXAFS) spectrum and LI-, LII-, and LIII-edge X-ray absorption near-edge structure (XANES) spectra of three concentrations of [Ir(H2O)6]3+ in perchloric acid media were measured. To carry out classical MD simulations of the aqua ion in water, a new set of first-principles Ir-H2O intermolecular potentials, based on the hydrated ion concept, has been developed. Structural, dynamics, and energetic properties have been obtained from the analysis of the statistical trajectories generated. The Ir-O radial distribution function shows two well-defined peaks at 2.04 +/- 0.01 and 4.05 +/- 0.05 A corresponding to the first and second hydration shell, respectively; the fundamental frequencies for the aqua ion in water are well reproduced by the MD simulation, and its dynamic properties are similar to the experimental values corresponding to other hexahydrated trivalent ions. Particular attention has been devoted to the experimental determination of the second hydration shell. It has been found that contrarily to what expected on the basis of the inertness of the Ir3+ aquaion, the detection of the second hydration shell by EXAFS for this cation is more difficult than for others less inert aqua ions such as Cr3+ or Rh3+. But when combined with MD simulations it is possible to confirm the coordination distance for this shell at 4.1 +/- 0.1 A. In addition, the computation of LI, LII and LIII XANES spectra were carried out using the structural information obtained from MD. These computations allowed the assignment of special features of the spectra to the second hydration shell on a quantitative basis. Therefore, interestingly XANES spectra have given a stronger support to the second hydration shell than EXAFS. The fit of the LIII-edge EXAFS gives an accurate description of the first hydration shell structure in aqueous solution. The value for Ir-O first shell is 2.04 +/- 0.01 A. The statistical information available with the MD results has allowed the analysis of the standard deviation associated with the computation of the XANES spectrum. It is shown that the standard deviation increases with the number of hydration shells and this increase is nonuniform along the average spectrum.


Assuntos
Irídio/química , Modelos Químicos , Água/química , Fenômenos Químicos , Físico-Química , Soluções , Espectrometria por Raios X
4.
Santa Cruz, 2002; .
Tese em Espanhol | LILACS-Express | LIBOCS, LIBOSP | ID: biblio-1324916
5.
Santa Cruz, 2002; .
Tese em Espanhol | LILACS-Express | LIBOCS, LIBOSP | ID: biblio-1331323
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA