Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Neurocrit Care ; 36(1): 130-138, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34232458

RESUMO

INTRODUCTION: Seizures and abnormal periodic or rhythmic patterns are observed on continuous electroencephalography monitoring (cEEG) in up to half of patients hospitalized with moderate to severe traumatic brain injury (TBI). We aimed to determine the impact of seizures and abnormal periodic or rhythmic patterns on cognitive outcome 3 months following moderate to severe TBI. METHODS: This was a post hoc analysis of the multicenter randomized controlled phase 2 INTREPID2566 clinical trial conducted from 2010 to 2016 across 20 United States Level I trauma centers. Patients with nonpenetrating TBI and postresuscitation Glasgow Coma Scale scores 4-12 were included. Bedside cEEG was initiated per protocol on admission to intensive care, and the burden of ictal-interictal continuum (IIC) patterns, including seizures, was quantified. A summary global cognition score at 3 months following injury was used as the primary outcome. RESULTS: 142 patients (age mean + / - standard deviation 32 + / - 13 years; 131 [92%] men) survived with a mean global cognition score of 81 + / - 15; nearly one third were considered to have poor functional outcome. 89 of 142 (63%) patients underwent cEEG, of whom 13 of 89 (15%) had severe IIC patterns. The quantitative burden of IIC patterns correlated inversely with the global cognition score (r = - 0.57; p = 0.04). In multiple variable analysis, the log-transformed burden of severe IIC patterns was independently associated with the global cognition score after controlling for demographics, premorbid estimated intelligence, injury severity, sedatives, and antiepileptic drugs (odds ratio 0.73, 95% confidence interval 0.60-0.88; p = 0.002). CONCLUSIONS: The burden of seizures and abnormal periodic or rhythmic patterns was independently associated with worse cognition at 3 months following TBI. Their impact on longer-term cognitive endpoints and the potential benefits of seizure detection and treatment in this population warrant prospective study.


Assuntos
Lesões Encefálicas Traumáticas , Eletroencefalografia , Adulto , Lesões Encefálicas Traumáticas/complicações , Cognição , Eletroencefalografia/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Convulsões/diagnóstico , Adulto Jovem
2.
Pharmacol Biochem Behav ; 203: 173154, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33609599

RESUMO

Interest in developing NMDA receptor antagonists with reduced side-effects for neurological and psychiatric disorders has been re-energized by the recent introduction of esketamine into clinical practice for treatment-resistant depression. Structural analogs of dextromethorphan bind with low affinity to the NMDA receptor ion channel, have functional effects in vivo, and generally display a lower propensity for side-effects than that of ketamine and other higher affinity antagonists. As such, the aim of the present study was to determine whether a series of N-substituted-3-alkoxy-substituted dextromethorphan analogs produce their anticonvulsant effects through NMDA receptor blockade. Compounds were studied against NMDA-induced seizures in rats. Compounds were administered intracerebroventricularly in order to mitigate confounds of drug metabolism that arise from systemic administration. Comparison of the anticonvulsant potencies to their affinities for NMDA, σ1, and σ2 binding sites were made in order to evaluate the contribution of these receptors to anticonvulsant efficacy. The potencies to block convulsions were positively associated with their affinities to bind to the NMDA receptor ion channel ([3H]-TCP binding) (r = 0.71, p < 0.05) but not to σ1 receptors ([3H]-SKF 10047 binding) (r = -0.31, p = 0.46) or to σ2 receptors ([3H]-DTG binding) (p = -0.38, p = 0.36). This is the first report demonstrating that these dextromethorphan analogs are functional NMDA receptor antagonists in vivo. Given their potential therapeutic utility and favorable side-effect profiles, such low affinity NMDA receptor antagonists could be considered for further development in neurological (e.g., anticonvulsant) and psychiatric (e.g., antidepressant) disorders.


Assuntos
Anticonvulsivantes/administração & dosagem , Dextrometorfano/análogos & derivados , Dextrometorfano/administração & dosagem , Dextrorfano/administração & dosagem , Agonistas de Aminoácidos Excitatórios/efeitos adversos , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , N-Metilaspartato/efeitos adversos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Álcoois/química , Animais , Anticonvulsivantes/metabolismo , Sítios de Ligação , Dextrometorfano/metabolismo , Dextrorfano/metabolismo , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/metabolismo , Infusões Intraventriculares , Ligantes , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores sigma/metabolismo , Resultado do Tratamento , Receptor Sigma-1
3.
Crit Care Med ; 47(4): 574-582, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30624278

RESUMO

OBJECTIVES: After traumatic brain injury, continuous electroencephalography is widely used to detect electrographic seizures. With the development of standardized continuous electroencephalography terminology, we aimed to describe the prevalence and burden of ictal-interictal patterns, including electrographic seizures after moderate-to-severe traumatic brain injury and to correlate continuous electroencephalography features with functional outcome. DESIGN: Post hoc analysis of the prospective, randomized controlled phase 2 multicenter INTREPID study (ClinicalTrials.gov: NCT00805818). Continuous electroencephalography was initiated upon admission to the ICU. The primary outcome was the 3-month Glasgow Outcome Scale-Extended. Consensus electroencephalography reviews were performed by raters certified in standardized continuous electroencephalography terminology blinded to clinical data. Rhythmic, periodic, or ictal patterns were referred to as "ictal-interictal continuum"; severe ictal-interictal continuum was defined as greater than or equal to 1.5 Hz lateralized rhythmic delta activity or generalized periodic discharges and any lateralized periodic discharges or electrographic seizures. SETTING: Twenty U.S. level I trauma centers. PATIENTS: Patients with nonpenetrating traumatic brain injury and postresuscitation Glasgow Coma Scale score of 4-12 were included. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among 152 patients with continuous electroencephalography (age 34 ± 14 yr; 88% male), 22 (14%) had severe ictal-interictal continuum including electrographic seizures in four (2.6%). Severe ictal-interictal continuum burden correlated with initial prognostic scores, including the International Mission for Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (r = 0.51; p = 0.01) and Injury Severity Score (r = 0.49; p = 0.01), but not with functional outcome. After controlling clinical covariates, unfavorable outcome was independently associated with absence of posterior dominant rhythm (common odds ratio, 3.38; 95% CI, 1.30-9.09), absence of N2 sleep transients (3.69; 1.69-8.20), predominant delta activity (2.82; 1.32-6.10), and discontinuous background (5.33; 2.28-12.96) within the first 72 hours of monitoring. CONCLUSIONS: Severe ictal-interictal continuum patterns, including electrographic seizures, were associated with clinical markers of injury severity but not functional outcome in this prospective cohort of patients with moderate-to-severe traumatic brain injury. Importantly, continuous electroencephalography background features were independently associated with functional outcome and improved the area under the curve of existing, validated predictive models.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/reabilitação , Estado Terminal/terapia , Eletroencefalografia/métodos , Índice de Gravidade de Doença , Adulto , Estudos de Coortes , Feminino , Escala de Resultado de Glasgow , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Resultado do Tratamento
4.
J Neurotrauma ; 36(2): 348-359, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29987972

RESUMO

Glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase (UCH-L1), markers of glial and neuronal cell body injury, respectively, have been previously selected by the Operation Brain Trauma Therapy (OBTT) pre-clinical therapy and biomarker screening consortium as drug development tools. However, traumatic axonal injury (TAI) also represents a major consequence and determinant of adverse outcomes after traumatic brain injury (TBI). Thus, biomarkers capable of assessing TAI are much needed. Neurofilaments (NFs) are found exclusively in axons. Here, we evaluated phospho-neurofilament-H (pNF-H) protein as a possible new TAI marker in serum and cerebrospinal fluid (CSF) across three rat TBI models in studies carried out by the OBTT consortium, namely, controlled cortical impact (CCI), parasagittal fluid percussion (FPI), and penetrating ballistics-like brain injury (PBBI). We indeed found that CSF and serum pNF-H levels are robustly elevated by 24 h post-injury in all three models. Further, in previous studies by OBTT, levetiracetam showed the most promising benefits, whereas nicotinamide showed limited benefit only at high dose (500 mg/kg). Thus, serum samples from the same repository collected by OBTT were evaluated. Treatment with 54 mg/kg intravenously of levetiracetam in the CCI model and 170 mg/kg in the PBBI model significantly attenuated pNF-H levels at 24 h post-injury as compared to respective vehicle groups. In contrast, nicotinamide (50 or 500 mg/kg) showed no reduction of pNF-H levels in CCI or PBBI models. Our current study suggests that pNF-H is a useful theranostic blood-based biomarker for TAI across different rodent TBI models. In addition, our data support levetiracetam as the most promising TBI drug candidate screened by OBTT to date.


Assuntos
Biomarcadores/sangue , Lesões Encefálicas Traumáticas/sangue , Proteínas de Neurofilamentos/sangue , Animais , Biomarcadores/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Modelos Animais de Doenças , Levetiracetam/farmacologia , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Niacinamida/farmacologia , Nootrópicos/farmacologia , Ratos , Ratos Sprague-Dawley , Nanomedicina Teranóstica/métodos , Complexo Vitamínico B/farmacologia
5.
Mil Med ; 183(suppl_1): 303-312, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635589

RESUMO

Operation brain trauma therapy (OBTT) is a multi-center, pre-clinical drug and biomarker screening consortium for traumatic brain injury (TBI). Therapies are screened across three rat models (parasagittal fluid percussion injury, controlled cortical impact [CCI], and penetrating ballistic-like brain injury). Operation brain trauma therapy seeks to define therapies that show efficacy across models that should have the best chance in randomized clinical trials (RCTs) and/or to define model-dependent therapeutic effects, including TBI protein biomarker responses, to guide precision medicine-based clinical trials in targeted pathologies. The results of the first five therapies tested by OBTT (nicotinamide, erythropoietin, cyclosporine [CsA], simvastatin, and levetiracetam) were published in the Journal of Neurotrauma. Operation brain trauma therapy now describes preliminary results on four additional therapies (glibenclamide, kollidon-VA64, AER-271, and amantadine). To date, levetiracetam was beneficial on cognitive outcome, histology, and/or biomarkers in two models. The second most successful drug, glibenclamide, improved motor function and histology in CCI. Other therapies showed model-dependent effects (amantadine and CsA). Critically, glial fibrillary acidic protein levels predicted treatment effects. Operation brain trauma therapy suggests that levetiracetam merits additional pre-clinical and clinical evaluation and that glibenclamide and amantadine merit testing in specific TBI phenotypes. Operation brain trauma therapy has established that rigorous, multi-center consortia could revolutionize TBI therapy and biomarker development.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Programas de Rastreamento/métodos , Animais , Biomarcadores/sangue , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Proteína Glial Fibrilar Ácida/análise , Proteína Glial Fibrilar Ácida/sangue , Programas de Rastreamento/tendências , Ratos , Ratos Sprague-Dawley/lesões , Recuperação de Função Fisiológica/efeitos dos fármacos , Ubiquitina Tiolesterase/análise , Ubiquitina Tiolesterase/sangue
6.
Brain Inj ; 31(9): 1168-1176, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28981339

RESUMO

As a follow-up to the 2008 state-of-the-art (SOTA) conference on traumatic brain injuries (TBIs), the 2015 event organized by the United States Department of Veterans Affairs (VA) Office of Research and Development (ORD) analysed the knowledge gained over the last 7 years as it relates to basic scientific methods, experimental findings, diagnosis, therapy, and rehabilitation of TBIs and blast-induced neurotraumas (BINTs). The current article summarizes the discussions and recommendations of the scientific panel attending the Preclinical Modeling and Therapeutic Development Workshop of the conference, with special emphasis on factors slowing research progress and recommendations for ways of addressing the most significant pitfalls.


Assuntos
Traumatismos por Explosões/epidemiologia , Lesões Encefálicas Traumáticas/epidemiologia , Modelos Animais de Doenças , Militares , United States Department of Veterans Affairs/tendências , Animais , Traumatismos por Explosões/psicologia , Traumatismos por Explosões/terapia , Lesões Encefálicas Traumáticas/psicologia , Lesões Encefálicas Traumáticas/terapia , Previsões , Humanos , Militares/psicologia , Estados Unidos/epidemiologia
7.
J Trauma Acute Care Surg ; 83(1 Suppl 1): S25-S34, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28452872

RESUMO

BACKGROUND: Posttraumatic seizures are a medical problem affecting patients with traumatic brain injury. Yet effective treatment is lacking owing to the limitations of antiepileptic drugs (AEDs) applicable to these patients. METHODS: In this study, we evaluated the dose-response efficacy of levetiracetam (12.5-100.0 mg/kg) and gabapentin (1.25-25.0 mg/kg) administered either individually or in pairs at fixed-dose ratios as a combination in mitigating posttraumatic nonconvulsive seizures induced by severe penetrating ballistic-like brain injury (PBBI) in rats. Seizures were detected by continuous electroencephalogram (EEG) monitoring for 72 hours postinjury. Animals were treated twice per day for 3 days by intravenous injections. RESULTS: Both levetiracetam (25-100 mg/kg) and gabapentin (6.25-25 mg/kg) significantly reduced PBBI-induced seizure frequency by 44% to 73% and 61% to 69%, and seizure duration by 45% to 64% and 70% to 78%, respectively. However, the two drugs manifested different dose-response profiles. Levetiracetam attenuated seizure activity in a dose-dependent fashion, whereas the beneficial effects of gabapentin plateaued across the three highest doses tested. Combined administration of levetiracetam and gabapentin mirrored the more classic dose-response profile of levetiracetam monotherapy. However, no additional benefit was derived from the addition of gabapentin. Furthermore, isobolographic analysis of the combination dose-response profile of levetiracetam and gabapentin failed to reach the expected level of additivity, suggesting an unlikelihood of favorable interactions between these two drugs against spontaneously occurring posttraumatic seizure activities at the particular set of dose ratios tested. CONCLUSION: This study was the first attempt to apply isobolographic approach to studying AED combination therapy in the context of spontaneously occurring posttraumatic seizures. Despite the failure to achieve additivity from levetiracetam and gabapentin combination, it is important to recognize the objectivity of the isobolographic approach in the evaluation of AED combination therapy against seizures directly associated with brain injuries.


Assuntos
Aminas/farmacologia , Ácidos Cicloexanocarboxílicos/farmacologia , Traumatismos Cranianos Penetrantes/complicações , Piracetam/análogos & derivados , Convulsões/tratamento farmacológico , Convulsões/etiologia , Ácido gama-Aminobutírico/farmacologia , Animais , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Eletroencefalografia , Gabapentina , Levetiracetam , Masculino , Piracetam/farmacologia , Ratos , Ratos Sprague-Dawley
8.
J Trauma Acute Care Surg ; 83(1 Suppl 1): S145-S149, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28452880

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small stable RNAs that regulate translational degradation or repression of genes involved in brain trauma-mediated inflammation. More recently, miRNAs have emerged as potential novel TBI biomarkers. The aim of this study was to determine if a select set of miRNAs (miR-21, Let-7i, miR-124a, miR-146a, miR-107) that were previously associated with TBI models and clinical studies would be dysregulated and correlated to inflammatory cytokine abundance in the rat penetrating ballistic-like brain injury (PBBI) model. METHODS: Adult male Sprague-Dawley rats received a unilateral frontal 10% PBBI, which produces a temporary cavity. Sham animals received a craniotomy only. Ipsilateral brain tissue and serum were collected 4 hours to 7 days post-injury. Quantitation of miR-21, Let-7i, miR-124a, miR-146a, or miR-107 levels was conducted using Taqman PCR assays normalized to the endogenous reference, U6 snRNA. Brain tissue derived from matching cohorts was used to determine 1L-1beta and IL-6 levels by enzyme-linked immunosorbent assay. RESULTS: Brain tissue Let-7i and miR-21 increased at 4 hours and 1 day, whereas miR-124a and miR-107 were enhanced only 1 day post-injury. MiR-146a displayed a biphasic response and increased 1 day and 7 days, whereas elevation of miR-21 was sustained 1 day to 7 days after PBBI. Pathway analysis indicated that miRNAs were linked to inflammatory proteins, IL-6 and IL-1beta. Confirmation by enzyme-linked immunosorbent assay indicated that both cytokines were increased and peaked at 1 day, but fell at 3 days through 7 days after PBBI, indicating an inverse relationship with miRNA abundance. Serum Let-7i, alone, was differentially abundant 7 days after PBBI. CONCLUSION: Brain tissue-derived miRNAs linked to increased cytokine levels demonstrates a plausible therapeutic target of TBI-induced inflammation. Suppression of serum derived Let-7i may have utility as a biomarker of subacute injury progression or therapeutic responses.


Assuntos
Citocinas/metabolismo , Traumatismos Cranianos Penetrantes/metabolismo , MicroRNAs/metabolismo , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Masculino , Medicina Militar , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley
9.
J Neurotrauma ; 34(19): 2768-2789, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28326890

RESUMO

Closed-head concussive injury is one of the most common causes of traumatic brain injury (TBI). Isolated concussions frequently produce acute neurological impairments, and individuals typically recover spontaneously within a short time frame. In contrast, brain injuries resulting from multiple concussions can result in cumulative damage and elevated risk of developing chronic brain pathologies. Increased attention has focused on identification of diagnostic markers that can prognostically serve as indices of brain health after injury, revealing the temporal profile of vulnerability to a second insult. Such markers may demarcate adequate recovery periods before concussed patients can return to required activities. We developed a noninvasive closed-head impact model that captures the hallmark symptoms of concussion in the absence of gross tissue damage. Animals were subjected to single or repeated concussive impact and examined using a battery of neurological, vestibular, sensorimotor, and molecular metrics. A single concussion induced transient, but marked, acute neurological impairment, gait alterations, neuronal death, and increased glial fibrillary acidic protein (GFAP) expression in brain tissue. As expected, repeated concussions exacerbated sensorimotor dysfunction, prolonged gait abnormalities, induced neuroinflammation, and upregulated GFAP and tau. These animals also exhibited chronic functional neurological impairments with sustained astrogliosis and white matter thinning. Acute changes in molecular signatures correlated with behavioral impairments, whereas increased times to regaining consciousness and balance impairments were associated with higher GFAP and neuroinflammation. Overall, behavioral consequences of either single or repeated concussive impact injuries appeared to resolve more quickly than the underlying molecular, metabolic, and neuropathological abnormalities. This observation, which is supported by similar studies in other mTBI models, underscores the critical need to develop more objective prognostic measures for guiding return-to-play decisions.


Assuntos
Concussão Encefálica , Modelos Animais de Doenças , Animais , Concussão Encefálica/complicações , Concussão Encefálica/patologia , Concussão Encefálica/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
10.
J Neurotrauma ; 34(11): 1981-1995, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28249550

RESUMO

Penetrating traumatic brain injury (PTBI) is one of the major cause of death and disability worldwide. Previous studies with penetrating ballistic-like brain injury (PBBI), a PTBI rat model revealed widespread perilesional neurodegeneration, similar to that seen in humans following gunshot wound to the head, which is unmitigated by any available therapies to date. Therefore, we evaluated human neural stem cell (hNSC) engraftment to putatively exploit the potential of cell therapy that has been seen in other central nervous system injury models. Toward this objective, green fluorescent protein (GFP) labeled hNSC (400,000 per animal) were transplanted in immunosuppressed Sprague-Dawley (SD), Fisher, and athymic (ATN) PBBI rats 1 week after injury. Tacrolimus (3 mg/kg 2 days prior to transplantation, then 1 mg/kg/day), methylprednisolone (10 mg/kg on the day of transplant, 1 mg/kg/week thereafter), and mycophenolate mofetil (30 mg/kg/day) for 7 days following transplantation were used to confer immunosuppression. Engraftment in SD and ATN was comparable at 8 weeks post-transplantation. Evaluation of hNSC differentiation and distribution revealed increased neuronal differentiation of transplanted cells with time. At 16 weeks post-transplantation, neither cell proliferation nor glial lineage markers were detected. Transplanted cell morphology was similar to that of neighboring host neurons, and there was relatively little migration of cells from the peritransplant site. By 16 weeks, GFP-positive processes extended both rostrocaudally and bilaterally into parenchyma, spreading along host white matter tracts, traversing the internal capsule, and extending ∼13 mm caudally from transplantation site reaching into the brainstem. In a Morris water maze test at 8 weeks post-transplantation, animals with transplants had shorter latency to platform than vehicle-treated animals. However, weak injury-induced cognitive deficits in the control group at the delayed time point confounded benefits of durable engraftment and neuronal differentiation. Therefore, these results justify further studies to progress towards clinical translation of hNSC therapy for PTBI.


Assuntos
Diferenciação Celular/fisiologia , Transtornos Cognitivos/terapia , Traumatismos Cranianos Penetrantes/terapia , Células-Tronco Neurais/transplante , Neurônios/fisiologia , Transplante de Células-Tronco/métodos , Animais , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/terapia , Transtornos Cognitivos/diagnóstico , Traumatismos Cranianos Penetrantes/diagnóstico , Humanos , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344 , Ratos Nus , Ratos Sprague-Dawley
11.
Methods Mol Biol ; 1462: 597-610, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27604740

RESUMO

Mitochondrial dysfunction is one of the key posttraumatic neuropathological events observed in various experimental models of traumatic brain injury (TBI). The extent of mitochondrial dysfunction has been associated with the severity and time course of secondary injury following brain trauma. Critically, several mitochondrial targeting preclinical drugs used in experimental TBI models have shown improved mitochondrial bioenergetics, together with cortical tissue sparing and cognitive behavioral outcome. Mitochondria, being a central regulator of cellular metabolic pathways and energy producer of cells, are of a great interest for researchers aiming to adopt cutting-edge methodology for mitochondrial bioenergetics assessment. The traditional way of mitochondrial bioenergetics analysis utilizing a Clark-type oxygen electrode (aka. oxytherm) is time-consuming and labor-intensive. In the present chapter, we describe an advanced and high-throughput method for mitochondrial bioenergetics assessments utilizing the Seahorse Biosciences XF(e)24 Flux Analyzer. This allows for simultaneous measurement of multiple samples with higher efficiency than the oxytherm procedure. This chapter provides helpful guidelines for conducting mitochondrial isolation and studying mitochondrial bioenergetics in brain tissue homogenates following experimental TBI.


Assuntos
Metabolismo Energético , Ensaios de Triagem em Larga Escala , Mitocôndrias/metabolismo , Traumatismos do Sistema Nervoso/etiologia , Traumatismos do Sistema Nervoso/metabolismo , Animais , Respiração Celular/efeitos dos fármacos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Masculino , Metabolômica/métodos , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa , Ratos , Espécies Reativas de Oxigênio/metabolismo , Traumatismos do Sistema Nervoso/tratamento farmacológico
12.
Methods Mol Biol ; 1462: 735-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27604748

RESUMO

Despite prodigious advances in TBI neurobiology research and a broad arsenal of animal models mimicking different aspects of human brain injury, this field has repeatedly experienced collective failures to translate from animals to humans, particularly in the area of therapeutics. This lack of success stems from variability and inconsistent standardization across models and laboratories, as well as insufficient objective and quantifiable diagnostic measures (biomarkers, high-resolution imaging), understanding of the vast clinical heterogeneity, and clinically centered conception of the TBI animal models. Significant progress has been made by establishing well-defined standards for reporting animal studies with "preclinical common data elements" (CDE), and for the reliability and reproducibility in preclinical TBI therapeutic research with the Operation Brain Trauma Therapy (OBTT) consortium. However, to break the chain of failures and achieve a therapeutic breakthrough in TBI will probably require the use of higher species models, specific mechanism-based injury models by which to theranostically targeted treatment portfolios are tested, more creative concepts of therapy intervention including combination therapy and regeneration neurobiology strategies, and the adoption of dosing regimens based upon pharmacokinetic-pharmacodynamic (PK-PD) studies and guided by the injury severity and TBI recovery process.


Assuntos
Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Animais , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/terapia , Humanos , Pesquisa Translacional Biomédica
13.
PLoS One ; 11(7): e0158576, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27428544

RESUMO

Traumatic brain injury (TBI) is an established risk factor for the development of Alzheimer's disease (AD). Here the effects of severe penetrating TBI on APP and tau cleavage processing were investigated in a rodent model of penetrating ballistic-like brain injury (PBBI). PBBI was induced by stereotactically inserting a perforated steel probe through the right frontal cortex of the anesthetized rat and rapidly inflating/deflating the probe's elastic tubing into an elliptical shaped balloon to 10% of total rat brain volume causing temporary cavitation injury. Separate animals underwent probe injury (PrI) alone without balloon inflation. Shams underwent craniectomy. Brain tissue was collected acutely (4h, 24h, 3d) and subacutely (7d) post-injury and analyzed by immunoblot for full length APP (APP-FL) and APP beta c-terminal fragments (ßCTFs), full length tau (tau-FL) and tau truncation fragments and at 7d for cytotoxic Beta amyloid (Aß) peptides Aß40 and Aß42 analysis. APP-FL was significantly decreased at 3d and 7d following PBBI whereas APP ßCTFs were significantly elevated by 4h post-injury and remained elevated through 7d post-injury. Effects on ßCTFs were mirrored with PrI, albeit to a lesser extent. Aß40 and Aß42 were significantly elevated at 7d following PBBI and PrI. Tau-FL decreased substantially 3d and 7d post-PBBI and PrI. Importantly, a 22 kDa tau fragment (tau22), similar to that found in AD, was significantly elevated by 4h and remained elevated through 7d post-injury. Thus both APP and tau cleavage was dramatically altered in the acute and subacute periods post-injury. As cleavage of these proteins has also been implicated in AD, TBI pathology shown here may set the stage for the later development of AD or other tauopathies.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/patologia , Traumatismos Cranianos Penetrantes/metabolismo , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/análise , Animais , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/patologia , Traumatismos Cranianos Penetrantes/patologia , Masculino , Ratos Sprague-Dawley , Proteínas tau/análise
14.
Restor Neurol Neurosci ; 34(2): 257-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26890099

RESUMO

PURPOSE: We assessed the therapeutic efficacy of FDA-approved anti-epileptic drug Levetiracetam (LEV) to reduce post-traumatic nonconvulsive seizure (NCS) activity and promote neurobehavioral recovery following 10% frontal penetrating ballistic-like brain injury (PBBI) in male Sprague-Dawley rats. METHODS: Experiment 1 anti-seizure study: 50 mg/kg LEV (25 mg/kg maintenance doses) was given twice daily for 3 days (LEV3D) following PBBI; outcome measures included seizures incidence, frequency, duration, and onset. Experiment 2 neuroprotection studies: 50 mg/kg LEV was given twice daily for either 3 (LEV3D) or 10 days (LEV10D) post-injury; outcome measures include motor (rotarod) and cognitive (water maze) functions. RESULTS: LEV3D treatment attenuated seizure activity with significant reductions in NCS incidence (54%), frequency, duration, and delayed latency to seizure onset compared to vehicle treatment. LEV3D treatment failed to improve cognitive or motor performance; however extending the dosing regimen through 10 days post-injury afforded significant neuroprotective benefit. Animals treated with the extended LEV10D dosing regimen showed a twofold improvement in rotarod task latency to fall as well as significantly improved spatial learning performance (24%) in the MWM task. CONCLUSIONS: These findings support the dual anti- seizure and neuroprotective role of LEV, but more importantly identify the importance of an extended dosing protocol which was specific to the therapeutic targets studied.


Assuntos
Traumatismos Cranianos Penetrantes/complicações , Traumatismos Cranianos Penetrantes/tratamento farmacológico , Piracetam/análogos & derivados , Convulsões/tratamento farmacológico , Convulsões/etiologia , Análise de Variância , Animais , Modelos Animais de Doenças , Eletroencefalografia , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/etiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Levetiracetam , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Piracetam/farmacologia , Piracetam/uso terapêutico , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Estatísticas não Paramétricas , Fatores de Tempo , Índices de Gravidade do Trauma , Resultado do Tratamento
15.
J Neurotrauma ; 33(6): 538-52, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670694

RESUMO

Experimental studies targeting traumatic brain injury (TBI) have reported that erythropoietin (EPO) is an endogenous neuroprotectant in multiple models. In addition to its neuroprotective effects, it has also been shown to enhance reparative processes including angiogenesis and neurogenesis. Based on compelling pre-clinical data, EPO was tested by the Operation Brain Trauma Therapy (OBTT) consortium to evaluate therapeutic potential in multiple TBI models along with biomarker assessments. Based on the pre-clinical TBI literature, two doses of EPO (5000 and 10,000 IU/kg) were tested given at 15 min after moderate fluid percussion brain injury (FPI), controlled cortical impact (CCI), or penetrating ballistic-like brain injury (PBBI) with subsequent behavioral, histopathological, and biomarker outcome assessments. There was a significant benefit on beam walk with the 5000 IU dose in CCI, but no benefit on any other motor task across models in OBTT. Also, no benefit of EPO treatment across the three TBI models was noted using the Morris water maze to assess cognitive deficits. Lesion volume analysis showed no treatment effects after either FPI or CCI; however, with the 5000 IU/kg dose of EPO, a paradoxical increase in lesion volume and percent hemispheric tissue loss was seen after PBBI. Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in blood at 4 or 24 h after injury. No treatment effects were seen on biomarker levels after FPI, whereas treatment at either dose exacerbated the increase in GFAP at 24 h in PBBI but attenuated 24-4 h delta UCH-L1 levels at high dose in CCI. Our data indicate a surprising lack of efficacy of EPO across three established TBI models in terms of behavioral, histopathological, and biomarker assessments. Although we cannot rule out the possibility that other doses or more prolonged treatment could show different effects, the lack of efficacy of EPO reduced enthusiasm for its further investigation in OBTT.


Assuntos
Biomarcadores/sangue , Lesões Encefálicas Traumáticas , Eritropoetina/farmacologia , Fármacos Neuroprotetores/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/sangue , Masculino , Ratos , Ratos Sprague-Dawley , Ubiquitina Tiolesterase/sangue
16.
J Neurotrauma ; 33(6): 523-37, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670792

RESUMO

Nicotinamide (vitamin B3) was the first drug selected for cross-model testing by the Operation Brain Trauma Therapy (OBTT) consortium based on a compelling record of positive results in pre-clinical models of traumatic brain injury (TBI). Adult male Sprague-Dawley rats were exposed to either moderate fluid percussion injury (FPI), controlled cortical impact injury (CCI), or penetrating ballistic-like brain injury (PBBI). Nicotinamide (50 or 500 mg/kg) was delivered intravenously at 15 min and 24 h after injury with subsequent behavioral, biomarker, and histopathological outcome assessments. There was an intermediate effect on balance beam performance with the high (500 mg/kg) dose in the CCI model, but no significant therapeutic benefit was detected on any other motor task across the OBTT TBI models. There was an intermediate benefit on working memory with the high dose in the FPI model. A negative effect of the low (50 mg/kg) dose, however, was observed on cognitive outcome in the CCI model, and no cognitive improvement was observed in the PBBI model. Lesion volume analysis showed no treatment effects after either FPI or PBBI, but the high dose of nicotinamide resulted in significant tissue sparing in the CCI model. Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl-terminal hydrolase-1 (UCH-L1) in blood at 4 or 24 h after injury. Negative effects (both doses) were detected on biomarker levels of GFAP after FPI and on biomarker levels of UCH-L1 after PBBI. The high dose of nicotinamide, however, reduced GFAP levels after both PBBI and CCI. Overall, our results showed a surprising lack of benefit from the low dose nicotinamide. In contrast, and partly in keeping with the literature, some benefit was achieved with the high dose. The marginal benefits achieved with nicotinamide, however, which appeared sporadically across the TBI models, has reduced enthusiasm for further investigation by the OBTT Consortium.


Assuntos
Lesões Encefálicas Traumáticas , Niacinamida/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos , Complexo Vitamínico B/administração & dosagem , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/sangue , Masculino , Ratos , Ratos Sprague-Dawley , Ubiquitina Tiolesterase/sangue
17.
J Neurotrauma ; 33(6): 553-66, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26671075

RESUMO

Operation Brain Trauma Therapy (OBTT) is a consortium of investigators using multiple pre-clinical models of traumatic brain injury (TBI) to bring acute therapies to clinical trials. To screen therapies, we used three rat models (parasagittal fluid percussion injury [FPI], controlled cortical impact [CCI], and penetrating ballistic-like brain injury [PBBI]). We report results of the third therapy (cyclosporin-A; cyclosporine; [CsA]) tested by OBTT. At each site, rats were randomized to treatment with an identical regimen (TBI + vehicle, TBI + CsA [10 mg/kg], or TBI + CsA [20 mg/kg] given intravenously at 15 min and 24 h after injury, and sham). We assessed motor and Morris water maze (MWM) tasks over 3 weeks after TBI and lesion volume and hemispheric tissue loss at 21 days. In FPI, CsA (10 mg/kg) produced histological protection, but 20 mg/kg worsened working memory. In CCI, CsA (20 mg/kg) impaired MWM performance; surprisingly, neither dose showed benefit on any outcome. After PBBI, neither dose produced benefit on any outcome, and mortality was increased (20 mg/kg) partly caused by the solvent vehicle. In OBTT, CsA produced complex effects with histological protection at the lowest dose in the least severe model (FPI), but only deleterious effects as model severity increased (CCI and PBBI). Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in blood at 4 or 24 h after injury. No positive treatment effects were seen on biomarker levels in any of the models, whereas significant increases in 24 h UCH-L1 levels were seen with CsA (20 mg/kg) after CCI and 24 h GFAP levels in both CsA treated groups in the PBBI model. Lack of behavioral protection in any model, indicators of toxicity, and a narrow therapeutic index reduce enthusiasm for clinical translation.


Assuntos
Lesões Encefálicas Traumáticas , Ciclosporina/farmacologia , Imunossupressores/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/sangue , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Ubiquitina Tiolesterase/sangue
18.
J Neurotrauma ; 33(6): 606-14, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26671284

RESUMO

Operation Brain Trauma Therapy (OBTT) is a fully operational, rigorous, and productive multicenter, pre-clinical drug and circulating biomarker screening consortium for the field of traumatic brain injury (TBI). In this article, we synthesize the findings from the first five therapies tested by OBTT and discuss both the current work that is ongoing and potential future directions. Based on the results generated from the first five therapies tested within the exacting approach used by OBTT, four (nicotinamide, erythropoietin, cyclosporine A, and simvastatin) performed below or well below what was expected based on the published literature. OBTT has identified, however, the early post-TBI administration of levetiracetam as a promising agent and has advanced it to a gyrencephalic large animal model--fluid percussion injury in micropigs. The sixth and seventh therapies have just completed testing (glibenclamide and Kollidon VA 64), and an eighth drug (AER 271) is in testing. Incorporation of circulating brain injury biomarker assessments into these pre-clinical studies suggests considerable potential for diagnostic and theranostic utility of glial fibrillary acidic protein in pre-clinical studies. Given the failures in clinical translation of therapies in TBI, rigorous multicenter, pre-clinical approaches to therapeutic screening such as OBTT may be important for the ultimate translation of therapies to the human condition.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/tendências , Fármacos Neuroprotetores/uso terapêutico , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Masculino , Neurologia/métodos , Neurologia/tendências , Ratos , Ratos Sprague-Dawley
19.
J Neurotrauma ; 33(6): 581-94, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26671550

RESUMO

Levetiracetam (LEV) is an antiepileptic agent targeting novel pathways. Coupled with a favorable safety profile and increasing empirical clinical use, it was the fifth drug tested by Operation Brain Trauma Therapy (OBTT). We assessed the efficacy of a single 15 min post-injury intravenous (IV) dose (54 or 170 mg/kg) on behavioral, histopathological, and biomarker outcomes after parasagittal fluid percussion brain injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI) in rats. In FPI, there was no benefit on motor function, but on Morris water maze (MWM), both doses improved latencies and path lengths versus vehicle (p < 0.05). On probe trial, the vehicle group was impaired versus sham, but both LEV treated groups did not differ versus sham, and the 54 mg/kg group was improved versus vehicle (p < 0.05). No histological benefit was seen. In CCI, there was a benefit on beam balance at 170 mg/kg (p < 0.05 vs. vehicle). On MWM, the 54 mg/kg dose was improved and not different from sham. Probe trial did not differ between groups for either dose. There was a reduction in hemispheric tissue loss (p < 0.05 vs. vehicle) with 170 mg/kg. In PBBI, there was no motor, cognitive, or histological benefit from either dose. Regarding biomarkers, in CCI, 24 h glial fibrillary acidic protein (GFAP) blood levels were lower in the 170 mg/kg group versus vehicle (p < 0.05). In PBBI, GFAP blood levels were increased in vehicle and 170 mg/kg groups versus sham (p < 0.05) but not in the 54 mg/kg group. No treatment effects were seen for ubiquitin C-terminal hydrolase-L1 across models. Early single IV LEV produced multiple benefits in CCI and FPI and reduced GFAP levels in PBBI. LEV achieved 10 points at each dose, is the most promising drug tested thus far by OBTT, and the only drug to improve cognitive outcome in any model. LEV has been advanced to testing in the micropig model in OBTT.


Assuntos
Lesões Encefálicas Traumáticas , Nootrópicos/farmacologia , Piracetam/análogos & derivados , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/sangue , Levetiracetam , Masculino , Piracetam/farmacologia , Ratos , Ratos Sprague-Dawley , Ubiquitina Tiolesterase/sangue
20.
J Neurotrauma ; 33(6): 595-605, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26671651

RESUMO

Operation Brain Trauma Therapy (OBTT) is a multicenter pre-clinical drug screening consortium testing promising therapies for traumatic brain injury (TBI) in three well-established models of TBI in rats--namely, parasagittal fluid percussion injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI). This article presents unique characterization of these models using histological and behavioral outcomes and novel candidate biomarkers from the first three treatment trials of OBTT. Adult rats underwent CCI, FPI, or PBBI and were treated with vehicle (VEH). Shams underwent all manipulations except trauma. The glial marker glial fibrillary acidic protein (GFAP) and the neuronal marker ubiquitin C-terminal hydrolase (UCH-L1) were measured by enzyme-linked immunosorbent assay in blood at 4 and 24 h, and their delta 24-4 h was calculated for each marker. Comparing sham groups across experiments, no differences were found in the same model. Similarly, comparing TBI + VEH groups across experiments, no differences were found in the same model. GFAP was acutely increased in injured rats in each model, with significant differences in levels and temporal patterns mirrored by significant differences in delta 24-4 h GFAP levels and neuropathological and behavioral outcomes. Circulating GFAP levels at 4 and 24 h were powerful predictors of 21 day contusion volume and tissue loss. UCH-L1 showed similar tendencies, albeit with less robust differences between sham and injury groups. Significant differences were also found comparing shams across the models. Our findings (1) demonstrate that TBI models display specific biomarker profiles, functional deficits, and pathological consequence; (2) support the concept that there are different cellular, molecular, and pathophysiological responses to TBI in each model; and (3) advance our understanding of TBI, providing opportunities for a successful translation and holding promise for theranostic applications. Based on our findings, additional studies in pre-clinical models should pursue assessment of GFAP as a surrogate histological and/or theranostic end-point.


Assuntos
Biomarcadores/sangue , Lesões Encefálicas Traumáticas/sangue , Proteína Glial Fibrilar Ácida/sangue , Ubiquitina Tiolesterase/sangue , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...