Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(4): 2538-2548, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591939

RESUMO

Long-term fixed passive acoustic monitoring of cetacean populations is a logistical and technological challenge, often limited by the battery capacity of the autonomous recorders. Depending on the research scope and target species, temporal subsampling of the data may become necessary to extend the deployment period. This study explores the effects of different duty cycles on metrics that describe patterns of seasonal presence, call type richness richness, and daily call rate of three blue whale acoustics populations in the Southern Indian Ocean. Detections of blue whale calls from continuous acoustic data were subsampled with three different duty cycles of 50%, 33%, and 25% within listening periods ranging from 1 min to 6 h. Results show that reducing the percentage of recording time reduces the accuracy of the observed seasonal patterns as well as the estimation of daily call rate and call call type richness. For a specific duty cycle, short listening periods (5-30 min) are preferred to longer listening periods (1-6 h). The effects of subsampling are greater the lower the species' vocal activity or the shorter their periods of presence. These results emphasize the importance of selecting a subsampling scheme adapted to the target species.


Assuntos
Acústica , Balaenoptera , Animais , Cetáceos , Fontes de Energia Elétrica , Oceano Índico
2.
J Acoust Soc Am ; 149(5): 3086, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34241138

RESUMO

The goal of this project is to use acoustic signatures to detect, classify, and count the calls of four acoustic populations of blue whales so that, ultimately, the conservation status of each population can be better assessed. We used manual annotations from 350 h of audio recordings from the underwater hydrophones in the Indian Ocean to build a deep learning model to detect, classify, and count the calls from four acoustic song types. The method we used was Siamese neural networks (SNN), a class of neural network architectures that are used to find the similarity of the inputs by comparing their feature vectors, finding that they outperformed the more widely used convolutional neural networks (CNN). Specifically, the SNN outperform a CNN with 2% accuracy improvement in population classification and 1.7%-6.4% accuracy improvement in call count estimation for each blue whale population. In addition, even though we treat the call count estimation problem as a classification task and encode the number of calls in each spectrogram as a categorical variable, SNN surprisingly learned the ordinal relationship among them. SNN are robust and are shown here to be an effective way to automatically mine large acoustic datasets for blue whale calls.


Assuntos
Balaenoptera , Acústica , Animais , Oceano Índico , Redes Neurais de Computação , Vocalização Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA