Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 175(6): e14066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148241

RESUMO

Abiotic stress has been shown to induce the formation of reactive oxygen species (ROS) in plant cells. When the level of ROS surpasses the capacity of the endogenous defence mechanism, oxidative stress status is reached, leading to plant damage and a drop in crop productivity. Under oxidative stress conditions, ROS can react with polyunsaturated fatty acids to form oxidized derivatives called phytoprostanes (PhytoPs) and phytofurans (PhytoFs), which are recognized as biomarkers of oxidative damage advance. Modern agriculture proposes the use of biostimulants as a sustainable strategy to alleviate the negative effects of oxidative stress on plants. This work evaluates the dose effect of natural antioxidant extract to mitigate the oxidative-stress deleterious effects in melon and sweet pepper exposed to thermal stress. The plants were sprayed with Ilex paraguariensis (IP) aqueous extract in three different concentrations before exposure to abiotic stress. PhytoP and PhytoF levels were determined in the leaves of melon and pepper plants. IP1 and IP2 were effective against oxidative stress in both plants, with IP1 being the most protective one. IP1 decreased the levels of PhytoPs and PhytoFs by roughly 44% in both melon plants and pepper plants. The yield, with IP1, increased by 57 and 39% in stressed melon and pepper plants, respectively. IP3 foliar application in melon plants induced a pro-oxidant effect rather than the expected mitigating action. However, in sweet pepper plants, IP3 decreased the oxidative stress progress and increased the fruit yield.


Assuntos
Ilex paraguariensis , Ilex paraguariensis/metabolismo , Espécies Reativas de Oxigênio , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Produtos Agrícolas
2.
Talanta ; 219: 121249, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887140

RESUMO

Quantification of endogenous hormones in plants is essential to understand their growth, development and response to biotic and abiotic stresses. However, it is challenging to develop high-throughput sample treatments from complex plant tissues containing low amounts of structurally unrelated and labile phytohormones while delivering clean and analyte-enriched extracts. In this paper we propose the use of supramolecular solvents (SUPRASs) made up or inverted hexagonal nanostructures of alkanols to address this challenge. The strategy was applied, as a proof of concept, to the quantification of stress-related phytohormones belonging to different categories (abscisic acid, salicylic acid, jasmonic acid, methyl jasmonate and 3-indoleacetic acid) in melon and pepper leaves. Sample treatment consisted in a single extraction-cleanup step involving the use of a low volume of SUPRAS (244 µL), the stirring (5 min) and centrifugation (15 min) of the sample at room temperature, and the direct analysis of the extract by liquid chromatography tandem mass spectrometry (LC-MS/MS). This high-throughput sample treatment method delivered excellent results for the target phytohormones regarding absolute recoveries (80-92%), method quantification limits (0.05-2 ng g-1), reproducibility (1-7%) and matrix effects (+13 to -31%), in both melon and pepper leaves, compared to reported methods based on repetitive solvent extraction, purification and solvent evaporation steps. The method was successfully applied to determine target hormones in melon and pepper plants for the evaluation of the effect of thermal stress. It was found that their concentration increased in the ranges 1.2-1.9 and 1.3-3.8 times in melon and pepper leaves, respectively, compared with control samples.


Assuntos
Reguladores de Crescimento de Plantas , Espectrometria de Massas em Tandem , Cromatografia Líquida , Reguladores de Crescimento de Plantas/análise , Reprodutibilidade dos Testes , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA