Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol NMR Assign ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37914968

RESUMO

S. aureus resistance to antibiotics has increased rapidly. MRSA strains can simultaneously be resistant to many different classes of antibiotics, including the so-called "last-resort" drugs. Resistance complicates treatment, increases mortality and substantially increases the cost of treatment. The need for new drugs against (multi)resistant S. aureus is high. M23B family peptidoglycan hydrolases, enzymes that can kill S. aureus by cleaving glycine-glycine peptide bonds in S. aureus cell wall are attractive targets for drug development because of their binding specificity and lytic activity. M23B enzymes lysostaphin, LytU and LytM have closely similar catalytic domain structures. They however differ in their lytic activities, which can arise from non-conserved residues in the catalytic groove and surrounding loops or differences in dynamics. We report here the near complete 1H/13C/15N resonance assignment of the catalytic domain of LytM, residues 185-316. The chemical shift data allow comparative structural and functional studies between the enzymes and is essential for understanding how these hydrolases degrade the cell wall.

2.
Biomol NMR Assign ; 17(2): 257-263, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37742292

RESUMO

Antibiotic resistance is a growing problem and a global threat for modern healthcare. New approaches complementing the traditional antibiotic drugs are urgently needed to secure the ability to treat bacterial infections also in the future. Among the promising alternatives are bacteriolytic enzymes, such as the cell wall degrading peptidoglycan hydrolases. Staphylococcus aureus LytM, a Zn2+-dependent glycyl-glycine endopeptidase of the M23 family, is one of the peptidoglycan hydrolases. It has a specificity towards staphylococcal peptidoglycan, making it an interesting target for antimicrobial studies. LytM hydrolyses the cell wall of S. aureus, a common pathogen with multi-resistant strains that are difficult to treat, such as the methicillin-resistant S. aureus, MRSA. Here we report the 1H, 15N and 13C chemical shift assignments of S. aureus LytM N-terminal domain and linker region, residues 26-184. These resonance assignments can provide the basis for further studies such as elucidation of structure and interactions.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Peptidoglicano/química , Ressonância Magnética Nuclear Biomolecular , Antibacterianos
3.
Structure ; 30(6): 828-839.e6, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35390274

RESUMO

Class I SH3 domain-binding motifs generally comply with the consensus sequence [R/K]xØPxxP, the hydrophobic residue Ø being proline or leucine. We have studied the unusual Ø = Ala-specificity of SNX9 SH3 by determining its complex structure with a peptide present in eastern equine encephalitis virus (EEEV) nsP3. The structure revealed the length and composition of the n-Src loop as important factors determining specificity. We also compared the affinities of EEEV nsP3 peptide, its mutants, and cellular ligands to SNX9 SH3. These data suggest that nsP3 has evolved to minimize reduction of conformational entropy upon binding, hence acquiring stronger affinity, enabling takeover of SNX9. The RxAPxxP motif was also found in human T cell leukemia virus-1 (HTLV-1) Gag polyprotein. We found that this motif was required for efficient HTLV-1 infection, and that the specificity of SNX9 SH3 for the RxAPxxP core binding motif was importantly involved in this process.


Assuntos
Alanina , Domínios de Homologia de src , Animais , Sítios de Ligação , Cavalos , Ligantes , Peptídeos/química , Ligação Proteica
4.
PLoS Pathog ; 17(11): e1009728, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780577

RESUMO

The accessory protein Nef of human and simian immunodeficiency viruses (HIV and SIV) is an important pathogenicity factor known to interact with cellular protein kinases and other signaling proteins. A canonical SH3 domain binding motif in Nef is required for most of these interactions. For example, HIV-1 Nef activates the tyrosine kinase Hck by tightly binding to its SH3 domain. An archetypal contact between a negatively charged SH3 residue and a highly conserved arginine in Nef (Arg77) plays a key role here. Combining structural analyses with functional assays, we here show that Nef proteins have also developed a distinct structural strategy-termed the "R-clamp"-that favors the formation of this salt bridge via buttressing Arg77. Comparison of evolutionarily diverse Nef proteins revealed that several distinct R-clamps have evolved that are functionally equivalent but differ in the side chain compositions of Nef residues 83 and 120. Whereas a similar R-clamp design is shared by Nef proteins of HIV-1 groups M, O, and P, as well as SIVgor, the Nef proteins of SIV from the Eastern chimpanzee subspecies (SIVcpzP.t.s.) exclusively utilize another type of R-clamp. By contrast, SIV of Central chimpanzees (SIVcpzP.t.t.) and HIV-1 group N strains show more heterogenous R-clamp design principles, including a non-functional evolutionary intermediate of the aforementioned two classes. These data add to our understanding of the structural basis of SH3 binding and kinase deregulation by Nef, and provide an interesting example of primate lentiviral protein evolution.


Assuntos
Evolução Molecular , Infecções por HIV/metabolismo , Lentivirus/genética , Proteínas Proto-Oncogênicas c-hck/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Domínios de Homologia de src , Sequência de Aminoácidos , Animais , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Proteínas Proto-Oncogênicas c-hck/genética , Homologia de Sequência de Aminoácidos , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
5.
Virulence ; 12(1): 1239-1257, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33939577

RESUMO

Late embryogenesis abundant (LEA) proteins are important players in the management of responses to stressful conditions, such as drought, high salinity, and changes in temperature. Many LEA proteins do not have defined three-dimensional structures, so they are intrinsically disordered proteins (IDPs) and are often highly hydrophilic. Although LEA-like sequences have been identified in bacterial genomes, the functions of bacterial LEA proteins have been studied only recently. Sequence analysis of outer membrane interleukin receptor I (BilRI) from the oral pathogen Aggregatibacter actinomycetemcomitans indicated that it shared sequence similarity with group 3/3b/4 LEA proteins. Comprehensive nuclearcgq magnetic resonance (NMR) studies confirmed its IDP nature, and expression studies in A. actinomycetemcomitans harboring a red fluorescence reporter protein-encoding gene revealed that bilRI promoter expression was increased at decreased temperatures. The amino acid backbone of BilRI did not stimulate either the production of reactive oxygen species from human leukocytes or the production of interleukin-6 from human macrophages. Moreover, BilRI-specific IgG antibodies could not be detected in the sera of A. actinomycetemcomitans culture-positive periodontitis patients. Since the bilRI gene is located near genes involved in natural competence (i.e., genes associated with the uptake of extracellular (eDNA) and its incorporation into the genome), we also investigated the role of BilRI in these events. Compared to wild-type cells, the ΔbilRI mutants showed a lower transformation efficiency, which indicates either a direct or indirect role in natural competence. In conclusion, A. actinomycetemcomitans might express BilRI, especially outside the host, to survive under stressful conditions and improve its transmission potential.


Assuntos
Proteínas de Bactérias , Proteínas Intrinsicamente Desordenadas , Aggregatibacter actinomycetemcomitans , Desenvolvimento Embrionário , Humanos , Proteínas de Plantas , Temperatura
6.
Biomol NMR Assign ; 15(1): 213-217, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475933

RESUMO

LEE-encoded effector EspF (EspF) is an effector protein part of enteropathogenic Escherichia coli's (EPEC's) arsenal for intestinal infection. This intrinsically disordered protein contains three highly conserved repeats which together compose over half of the protein's complete amino acid sequence. EPEC uses EspF to hijack host proteins in order to promote infection. In the attack EspF is translocated, together with other effector proteins, to host cell via type III secretion system. Inside host EspF stimulates actin polymerization by interacting with Neural Wiskott-Aldrich syndrome protein (N-WASP), a regulator in actin polymerization machinery. It is presumed that EspF acts by disrupting the autoinhibitory state of N-WASP GTPase binding domain. In this NMR spectroscopy study, we report the 1H, 13C, and 15N resonance assignments for the complex formed by the first 47-residue repeat of EspF and N-WASP GTPase binding domain. These near-complete resonance assignments provide the basis for further studies which aim to characterize structure, interactions, and dynamics between these two proteins in solution.


Assuntos
Escherichia coli Enteropatogênica , Ressonância Magnética Nuclear Biomolecular
7.
J Biomol NMR ; 74(12): 741-752, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33118136

RESUMO

Unidirectional coherence transfer is highly efficient in intrinsically disordered proteins (IDPs). Their elevated ps-ns timescale dynamics ensures long transverse (T2) relaxation times allowing sophisticated coherence transfer pathway selection in comparison to folded proteins. 1Hα-detection ensures non-susceptibility to chemical exchange with the solvent and enables chemical shift assignment of consecutive proline residues, typically abundant in IDPs. However, many IDPs undergo a disorder-to-order transition upon interaction with their target protein, which leads to the loss of the favorable relaxation properties. Long coherence transfer routes now result in prohibitively large decrease in sensitivity. We introduce a novel 4D 1Hα-detected experiment HACANCOi, together with its 3D implementation, which warrant high sensitivity for the assignment of proline-rich regions in IDPs in complex with a globular protein. The experiment correlates 1Hαi, 13Cαi, 15Ni and [Formula: see text] spins by transferring the magnetization concomitantly from 13Cαi to 15Ni and [Formula: see text]. The B1 domain of protein G (GB1), and the enteropathogenic E. coli EspF in complex with human SNX9 SH3, serve as model systems to demonstrate the attainable sensitivity and successful sequential assignment.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular , Humanos , Nexinas de Classificação/química , Nexinas de Classificação/metabolismo , Domínios de Homologia de src
8.
J Biomol NMR ; 74(2-3): 147-159, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31932991

RESUMO

Resonance assignment of intrinsically disordered proteins is remarkably challenging due to scant chemical shift dispersion arising from conformational heterogeneity. The challenge is even greater if repeating segments are present in the amino acid sequence. To forward unambiguous resonance assignment of intrinsically disordered proteins, we present iHACANCO, HACACON and (HACA)CONCAHA, three Hα-detected 4D experiments with Cα as an additional dimension. In addition, we present (HACA)CON(CA)NH and (HACA)N(CA)CONH, new 4D Hα-start, HN-detect experiments which have two NH dimensions to enhance peak dispersion in a sequential walk through C', NH and HN, and provide more accurate NH/HN chemical shifts than those that can be obtained from a crowded 1H, 15N-HSQC spectrum. Application of these 4D experiments is demonstrated using BilRI (165 aa), an outer-membrane intrinsically disordered protein from the opportunistic oral pathogen Aggregatibacter actinomycetemcomitans. BilRI amino acid sequence encompasses three very similar repeats with a 13-residue identical stretch in two of them.


Assuntos
Aggregatibacter actinomycetemcomitans/química , Proteínas de Bactérias/química , Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular
9.
Elife ; 82019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30767893

RESUMO

Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus. ROS alter the abundance, thiol redox state and oligomerization of the RCD1 protein in vivo, providing feedback control on its function. RCD1-dependent regulation is linked to chloroplast signaling by 3'-phosphoadenosine 5'-phosphate (PAP). Thus, RCD1 integrates organellar signaling from chloroplasts and mitochondria to establish transcriptional control over the metabolic processes in both organelles.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Cloroplastos/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Regulação da Expressão Gênica de Plantas/genética , Mitocôndrias/genética , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico/genética
10.
Biochim Biophys Acta Gen Subj ; 1863(4): 749-759, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30690122

RESUMO

BACKGROUND: Ubiquitin-like domains (UbLs), in addition to being post-translationally conjugated to the target through the E1-E2-E3 enzymatic cascade, can be translated as a part of the protein they ought to regulate. As integral UbLs coexist with the rest of the protein, their structural properties can differ from canonical ubiquitin, depending on the protein context and how they interact with it. In this work, we investigate T.th-ubl5, a UbL present in a polyubiquitin locus of Tetrahymena thermophila, which is integral to an ADP-ribosyl transferase protein. Only one other co-occurrence of these two domains within the same protein has been reported. METHODS: NMR, multiple sequence alignment, MD simulations and SPR have been used to characterize the structure of T.th-ubl5, identify putative binders and experimentally test the interaction, respectively. RESULTS: Molecular dynamics simulations showed that T.th-ubl5 is unable to bind the proteasome like ubiquitin due to the lack of the conserved hydrophobic patch. Of other integral UbLs identified by structural and sequence alignment, T.th-ubl5 showed high structural and sequence resemblance with the Ras-binding epitope of FERM UbLs. SPR experiments confirmed that a strong and specific interaction occurs between T.th-ubl5 and T.th-Ras. CONCLUSION: Data indicate that T.th-ubl5 does not interact with the proteasome like ubiquitin but acts as a decoy for the recruitment of Ras protein by the ADP-ribosyl transferase domain. GENERAL SIGNIFICANCE: Mono-ADP-ribosylation of Ras proteins is known as a prerogative of bacterial toxins. T.th-ubl5 mediated recruitment of Ras highlights the possibility of an unprecedented post-translational modification with interesting implication for signalling pathways.


Assuntos
ADP Ribose Transferases/metabolismo , Ressonância Magnética Nuclear Biomolecular , Poliubiquitina/metabolismo , Tetrahymena thermophila/química , ADP Ribose Transferases/química , ADP-Ribosilação , Simulação de Dinâmica Molecular , Poliubiquitina/química , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transdução de Sinais , Tetrahymena thermophila/metabolismo
11.
Front Mol Biosci ; 5: 60, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018958

RESUMO

Lysostaphin from Staphylococcus simulans and its family enzymes rapidly acquire prominence as the next generation agents in treatment of S. aureus infections. The specificity of lysostaphin is promoted by its C-terminal cell wall targeting domain selectivity toward pentaglycine bridges in S. aureus cell wall. Scission of these cross-links is carried out by its N-terminal catalytic domain, a zinc-dependent endopeptidase. Understanding the determinants affecting the efficiency of catalysis and strength and specificity of interactions lies at the heart of all lysostaphin family enzyme applications. To this end, we have used NMR, SAXS and molecular dynamics simulations to characterize lysostaphin structure and dynamics, to address the inter-domain interaction, the enzyme-substrate interaction as well as the catalytic properties of pentaglycine cleavage in solution. Our NMR structure confirms the recent crystal structure, yet, together with the molecular dynamics simulations, emphasizes the dynamic nature of the loops embracing the catalytic site. We found no evidence for inter-domain interaction, but, interestingly, the SAXS data delineate two preferred conformation subpopulations. Catalytic H329 and H360 were observed to bind a second zinc ion, which reduces lysostaphin pentaglycine cleaving activity. Binding of pentaglycine or its lysine derivatives to the targeting domain was found to be of very low affinity. The pentaglycine interaction site was located to the N-terminal groove of the domain. Notably, the targeting domain binds the peptidoglycan stem peptide Ala-d-γ-Glu-Lys-d-Ala-d-Ala with a much higher, micromolar affinity. Binding site mapping reveals two interaction sites of different affinities on the surface of the domain for this peptide.

12.
Sci Rep ; 7(1): 6020, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729697

RESUMO

We introduce LytU, a short member of the lysostaphin family of zinc-dependent pentaglycine endopeptidases. It is a potential antimicrobial agent for S. aureus infections and its gene transcription is highly upregulated upon antibiotic treatments along with other genes involved in cell wall synthesis. We found this enzyme to be responsible for the opening of the cell wall peptidoglycan layer during cell divisions in S. aureus. LytU is anchored in the plasma membrane with the active part residing in the periplasmic space. It has a unique Ile/Lys insertion at position 151 that resides in the catalytic site-neighbouring loop and is vital for the enzymatic activity but not affecting the overall structure common to the lysostaphin family. Purified LytU lyses S. aureus cells and cleaves pentaglycine, a reaction conveniently monitored by NMR spectroscopy. Substituting the cofactor zinc ion with a copper or cobalt ion remarkably increases the rate of pentaglycine cleavage. NMR and isothermal titration calorimetry further reveal that, uniquely for its family, LytU is able to bind a second zinc ion which is coordinated by catalytic histidines and is therefore inhibitory. The pH-dependence and high affinity of binding carry further physiological implications.


Assuntos
Endopeptidases/química , Lisostafina/química , Sequência de Aminoácidos , Antibacterianos/química , Sítios de Ligação , Domínio Catalítico , Membrana Celular/química , Membrana Celular/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Concentração de Íons de Hidrogênio , Lisostafina/metabolismo , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestrutura , Relação Estrutura-Atividade , Zinco/metabolismo
13.
Biomol NMR Assign ; 11(2): 207-210, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28593560

RESUMO

The A. thaliana RCD1 (radical-induced cell death1) protein is a cellular signaling hub protein which interacts with numerous plant transcription factors from different families. It consists of three conserved domains and intervening unstructured regions, the C-terminal RST domain being responsible for the interactions with the transcription factors. It has been shown that many partner proteins interact with RCD1 RST via their intrinsically disordered regions, and that the domain is able to house partners with divergent folds. We aim to structurally characterize the RCD1 RST domain and its complexes [complex with DREB2A]. Here we report the 1H, 15N and 13C chemical shift assignments of the backbone and sidechain atoms for RCD1 (468-589) containing the RST (510-567) domain.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/química , Sequência de Aminoácidos , Domínios Proteicos
14.
Biomol NMR Assign ; 11(1): 69-73, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27943001

RESUMO

Lysostaphin family endopeptidases, produced by Staphylococcus genus, are zinc-dependent enzymes that cleave pentaglycine bridges of cell wall peptidoglycan. They act as autolysins to maintain cell wall metabolism or as toxins and weapons against competing strains. Consequently, these enzymes are compelling targets for new drugs as well as are potential antimicrobial agents themselves against Staphylococcus pathogens, which depend on cell wall to retain their immunity against antibiotics. The rapid spread of methicillin and vancomycin-resistant Staphylococcus aureus strains draws demand for new therapeutic approaches. S. aureus gene sa0205 was found to be implicated in resistance to vancomycin and synthesis of the bacteria cell wall. The gene encodes for a catalytic domain of a lysostaphin-type endopeptidase. We aim to obtain the structure of the Sa0205 catalytic domain, the first solution structure of the catalytic domain of the lysostaphin family enzymes. In addition, we are to investigate the apparent binding of the second zinc ion, which has not been previously reported for the enzyme group. Herein, we present the backbone and side chain resonance assignments of Sa0205 endopeptidase catalytic domain in its one and two zinc-bound forms.


Assuntos
Domínio Catalítico , Lisostafina/química , Ressonância Magnética Nuclear Biomolecular , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Lisostafina/metabolismo
15.
J Biol Chem ; 291(31): 16307-17, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27268056

RESUMO

We show that a peptide from Chikungunya virus nsP3 protein spanning residues 1728-1744 binds the amphiphysin-2 (BIN1) Src homology-3 (SH3) domain with an unusually high affinity (Kd 24 nm). Our NMR solution complex structure together with isothermal titration calorimetry data on several related viral and cellular peptide ligands reveal that this exceptional affinity originates from interactions between multiple basic residues in the target peptide and the extensive negatively charged binding surface of amphiphysin-2 SH3. Remarkably, these arginines show no fixed conformation in the complex structure, indicating that a transient or fluctuating polyelectrostatic interaction accounts for this affinity. Thus, via optimization of such dynamic electrostatic forces, viral peptides have evolved a superior binding affinity for amphiphysin-2 SH3 compared with typical cellular ligands, such as dynamin, thereby enabling hijacking of amphiphysin-2 SH3-regulated host cell processes by these viruses. Moreover, our data show that the previously described consensus sequence PXRPXR for amphiphysin SH3 ligands is inaccurate and instead define it as an extended Class II binding motif PXXPXRpXR, where additional positive charges between the two constant arginine residues can give rise to extraordinary high SH3 binding affinity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Vírus Chikungunya/química , Proteínas Nucleares/química , Peptídeos/química , Proteínas Supressoras de Tumor/química , Proteínas não Estruturais Virais/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Vírus Chikungunya/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Eletricidade Estática , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/metabolismo , Proteínas não Estruturais Virais/metabolismo , Domínios de Homologia de src
16.
Protein Sci ; 25(3): 572-86, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26609676

RESUMO

Sin3A-associated protein 30-like (SAP30L) is one of the key proteins in a multi-subunit protein complex involved in transcriptional regulation via histone deacetylation. SAP30L, together with a highly homologous SAP30 as well as other SAP proteins (i.e., SAP25, SAP45, SAP130, and SAP180), is an essential component of the Sin3A corepressor complex, although its actual role has remained elusive. SAP30L is thought to function as an important stabilizing and bridging molecule in the complex and to mediate its interactions with other corepressors. SAP30L has been previously shown to contain an N-terminal Cys3 His type zinc finger (ZnF) motif, which is responsible for the key protein-protein, protein-DNA, and protein-lipid interactions. By using high-resolution mass spectrometry, we studied a redox-dependent disulfide bond formation in SAP30L ZnF as a regulatory mechanism for its structure and function. We showed that upon oxidative stress SAP30L undergoes the formation of two specific disulfide bonds, a vicinal Cys29-Cys30 and Cys38-Cys74, with a concomitant release of the coordinated zinc ion. The oxidized protein was shown to remain folded in solution and to bind signaling phospholipids. We also determined a solution NMR structure for SAP30L ZnF that showed an overall fold similar to that of SAP30, determined earlier. The NMR titration experiments with lipids and DNA showed that the binding is mediated by the C-terminal tail as well as both α-helices of SAP30L ZnF. The implications of these results for the structure and function of SAP30L are discussed.


Assuntos
Dissulfetos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosfolipídeos/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Proteínas Correpressoras/química , Proteínas Correpressoras/metabolismo , DNA/metabolismo , Dissulfetos/química , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Estresse Oxidativo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Dedos de Zinco
17.
PLoS One ; 10(8): e0136969, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26322797

RESUMO

Filamins (FLNs) are large, multidomain actin cross-linking proteins with diverse functions. Besides regulating the actin cytoskeleton, they serve as important links between the extracellular matrix and the cytoskeleton by binding cell surface receptors, functioning as scaffolds for signaling proteins, and binding several other cytoskeletal proteins that regulate cell adhesion dynamics. Structurally, FLNs are formed of an amino terminal actin-binding domain followed by 24 immunoglobulin-like domains (IgFLNs). Recent studies have demonstrated that myosin-mediated contractile forces can reveal hidden protein binding sites in the domain pairs IgFLNa18-19 and 20-21, enabling FLNs to transduce mechanical signals in cells. The atomic structures of these mechanosensor domain pairs in the resting state are known, as well as the structures of individual IgFLN21 with ligand peptides. However, little experimental data is available on how interacting protein binding deforms the domain pair structures. Here, using small-angle x-ray scattering-based modelling, x-ray crystallography, and NMR, we show that the adaptor protein migfilin-derived peptide-bound structure of IgFLNa20-21 is flexible and adopts distinctive conformations depending on the presence or absence of the interacting peptide. The conformational changes reported here may be common for all peptides and may play a role in the mechanosensor function of the site.


Assuntos
Filaminas/metabolismo , Peptídeos/metabolismo , Estrutura Terciária de Proteína/fisiologia , Actinas/metabolismo , Sítios de Ligação/fisiologia , Cristalografia por Raios X/métodos , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Miosinas/metabolismo , Ligação Proteica/fisiologia , Proteínas Recombinantes/metabolismo
18.
Biomol NMR Assign ; 9(2): 403-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25952762

RESUMO

The C-terminus of the human adenosine A2A receptor differs from the other human adenosine receptors by its exceptional length and lack of a canonical cysteine residue. We have previously structurally characterized this C-terminal domain and its interaction with calmodulin. It was shown to be structurally disordered and flexible, and to bind calmodulin with high affinity in a calcium-dependent manner. Interaction with calmodulin takes place at the N-terminal end of the A2A C-terminal domain without major conformational changes in the latter. NMR was one of the biophysical methods used in the study. Here we present the H(N), N, C(α), C(ß) and C' chemical shift assignments of the free form of the C-terminus residues 293-412, used in the NMR spectroscopic characterization of the domain.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular , Receptor A2A de Adenosina/química , Humanos , Prolina/química
19.
Biophys J ; 108(4): 903-917, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25692595

RESUMO

Understanding how ligands bind to G-protein-coupled receptors and how binding changes receptor structure to affect signaling is critical for developing a complete picture of the signal transduction process. The adenosine A2A receptor (A2AR) is a particularly interesting example, as it has an exceptionally long intracellular carboxyl terminus, which is predicted to be mainly disordered. Experimental data on the structure of the A2AR C-terminus is lacking, because published structures of A2AR do not include the C-terminus. Calmodulin has been reported to bind to the A2AR C-terminus, with a possible binding site on helix 8, next to the membrane. The biological meaning of the interaction as well as its calcium dependence, thermodynamic parameters, and organization of the proteins in the complex are unclear. Here, we characterized the structure of the A2AR C-terminus and the A2AR C-terminus-calmodulin complex using different biophysical methods, including native gel and analytical gel filtration, isothermal titration calorimetry, NMR spectroscopy, and small-angle X-ray scattering. We found that the C-terminus is disordered and flexible, and it binds with high affinity (Kd = 98 nM) to calmodulin without major conformational changes in the domain. Calmodulin binds to helix 8 of the A2AR in a calcium-dependent manner that can displace binding of A2AR to lipid vesicles. We also predicted and classified putative calmodulin-binding sites in a larger group of G-protein-coupled receptors.


Assuntos
Cálcio/química , Calmodulina/metabolismo , Receptor A2A de Adenosina/química , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/química , Humanos , Dados de Sequência Molecular , Ligação Proteica , Receptor A2A de Adenosina/metabolismo
20.
Biomol NMR Assign ; 9(1): 47-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24414222

RESUMO

Filamins regulate the actin cytoskeleton by cross-linking actin filaments, linking the cytoskeleton to the cell membrane, and through interaction with numerous binding partners such as intracellular signalling molecules, ion channels, receptors, enzymes and transcription factors. The rod region of filamins consists of 24 immunoglubulin (Ig)-like repeats, for some of which the functional unit is a domain pair. Our aim is to study filamin Ig domain-domain interactions and quaternary arrangement as well as to locate peptide binding sites on domain assemblies. We report here the H(N), N(H), C(α), C(ß), and methyl group assignments of filamin A three-domain fragment IgFLNa3-5 and filamin C two-domain fragment IgFLNc4-5.


Assuntos
Filaminas/química , Imunoglobulinas/química , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Sequências Repetitivas de Aminoácidos , Humanos , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...