Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(3)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36223693

RESUMO

Atomic layer deposited (ALD) transparent thermoelectric materials enable the introduction of energy harvesting and sensing devices onto surfaces of various shapes and sizes in imperceptible manner. Amongst these materials, ZnO has shown promising results in terms of both thermoelectric and optical characteristics. The thermoelectric performance of ZnO can be further optimized by introducing extrinsic doping, to the realization of which ALD provides excellent control. Here, we explore the effects of sandwiching of ZrO2layers with ZnO on glass substrates. The room-temperature thermoelectric power factor is maximised at 116µW m-1K-2with samples containing a 2% nominal percentage of ZrO2. The addition of ZrO2layers is further shown to reduce the thermal conductivity, resulting in a 20.2% decrease from the undoped ZnO at 2% doping. Our results contribute to increasing the understanding of the effects of Zr inclusion in structural properties and growth of ALD ZnO, as well as the thermal and thermoelectric properties of Zr-doped ZnO films in general.

2.
RSC Adv ; 11(8): 4297-4307, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35424412

RESUMO

Semiconductor heterostructure junctions are known to improve the water oxidation performance in photoelectrochemical (PEC) cells. Depending on the semiconductor materials involved, different kinds of junctions can appear, for instance, type II band alignment where the conduction and valence bands of the semiconductor materials are staggered with respect to each other. This band alignment allows for a charge separation of the photogenerated electron-hole pairs, where the holes will go from low-to-high valance band levels and vice versa for the electrons. For this reason, interface engineering has attracted intensive attention in recent years. In this work, a simplified model of the Fe2O3-TiO2 heterostructure was investigated via first-principles calculations. The results show that Fe2O3-TiO2 produces a type I band alignment in the heterojunction, which is detrimental to the water oxidation reaction. However, the results also show that interstitial hydrogens are energetically allowed in TiO2 and that they introduce states above the valance band, which can assist in the transfer of holes through the TiO2 layer. In response, well-defined planar Fe2O3-TiO2 heterostructures were manufactured, and measurements confirm the formation of a type I band alignment in the case of Fe2O3-TiO2, with very low photocurrent density as a result. However, once TiO2 was subjected to hydrogen treatment, there was a nine times higher photocurrent density at 1.50 V vs. the reversible hydrogen electrode under 1 sun illumination as compared to the original heterostructured photoanode. Via optical absorption, XPS analysis, and (photo)electrochemical measurements, it is clear that hydrogen treated TiO2 results in a type II band alignment in the Fe2O3-H:TiO2 heterostructure. This work is an example of how hydrogen doping in TiO2 can tailor the band alignment in TiO2-Fe2O3 heterostructures. As such, it provides valuable insights for the further development of similar material combinations.

3.
ACS Appl Mater Interfaces ; 12(43): 49210-49218, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32970947

RESUMO

Herein, enhancements in thermoelectric (TE) performance, both the power factor (PF) and thermal stability, are exhibited by sandwiching HfO2 and TiO2 layers onto atomic layer deposited-ZnO thin films. High-temperature TE measurements from 300 to 450 K revealed an almost two-fold improvement in electrical conductivity for TiO2/ZnO (TZO) samples, primarily owing to an increase in carrier concentration by Ti doping. On the other hand, HfO2/ZnO (HZO) achieved the highest PF values owing to maintaining Seebeck coefficients comparable to pure ZnO. HZO also exhibited excellent stability after multiple thermal cycles, which has not been previously observed for pure or doped ZnO thin films. Such improvement in both TE properties and thermal stability of HZO can be attributed to a shift in crystalline orientation from the a axis to c axis, as well as the high bond dissociation energy of Hf-O, stabilizing the ZnO structure. These unique properties exhibited by HZO and TZO thin films synthesized by atomic layer deposition pave the way for next-generation transparent TE devices.

4.
Nanotechnology ; 31(38): 384003, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516762

RESUMO

Understanding and management of light is of great importance for nanoscale devices. This report demonstrates enhanced absorption, photoluminescence and scattering in InP nanowires when coated with dielectric polymer shell. The shells increase absorption and emission by a factor of ∼2 and photoluminescence by a factor of ∼4. A thorough optical characterization is provided, including reflectance, transmission, luminescence and scattering to incident and transmitted directions. From this characterization, we derive the distribution of absorbed light within the structure (InP nanowires, Au seed particles and the substrate). Additionally, reflectance, transmission and emission are shown to become increasingly diffuse with the dielectric shells. The results are thought to provide better understanding in light-matter interaction in nanostructures, as well as to provide valuable tools for light and scattering management in nanoscale optoelectronics.

5.
ACS Omega ; 5(19): 10671-10679, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32455185

RESUMO

RuO2/TiO2 catalysts have shown broad use in promoting a variety of photocatalytic phenomena, such as water splitting and the photodecomposition of organic dyes and pollutants. Most current methods of photodepositing ruthenium oxide species (RuO x ) onto titanium dioxide (TiO2) films involve precursors that are either difficult to produce and prone to decomposition, such as RuO4, or require high-temperature oxidations, which can reduce the quality of the resulting catalyst and increase the risks and toxicity of the procedure. The present work demonstrates the photodeposition of RuO x onto TiO2 films, using potassium perruthenate (KRuO4) as a precursor, by improving substantially a procedure known to work on TiO2 nanopowders. In addition to demonstrating the applicability of this method of photodeposition to TiO2 films, this work also explores the importance of the material phase of the TiO2 substrate, outlines viable concentrations and photodeposition times at a given optical intensity, and demonstrates that the morphology of the photodeposited nanostructures changes from cauliflower-like spheroids to a matted, porous sponge-like structure with the addition of methanol to the precursor solution. This morphology change has not been documented previously. By providing an explanation for this difference in the morphology, this work provides both newer insights into the photodeposition process and provides an excellent foundation for future procedures, allowing a more targeted and controlled deposition based on the desired morphology.

6.
RSC Adv ; 10(55): 33307-33316, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35515023

RESUMO

Solar energy induced water splitting in photoelectrochemical (PEC) cells is one of the most sustainable ways of hydrogen production. The challenge is to develop corrosion resistant and chemically stable semiconductors that absorb sunlight in the visible region and, at the same time, have the band edges matching with the redox level of water. In this work, hematite (α-Fe2O3) thin films were prepared onto an indium-doped tin oxide (ITO; In:SnO2) substrate by e-beam evaporation of Fe, followed by air annealing at two different temperatures: 350 and 500 °C. The samples annealed at 500 °C show an in situ diffusion of indium from the ITO substrate to the surface of α-Fe2O3, where it acts as a dopant and enhances the photoelectrochemical properties of hematite. Structural, optical, chemical and photoelectrochemical analysis reveal that the diffusion of In at 500 °C enhances the optical absorption, increases the electrode-electrolyte contact area by changing the surface topology, improves the carrier concentration and shifts the flat band potential in the cathodic direction. Further enhancement in photocurrent density was observed by ex situ diffusion of Ti, deposited in the form of nanodisks, from the top surface to the bulk. The in situ In diffused α-Fe2O3 photoanode exhibits an improved photoelectrochemical performance, with a photocurrent density of 145 µA cm-2 at 1.23 VRHE, compared to 37 µA cm-2 for the photoanode prepared at 350 °C; it also decreases the photocurrent onset potential from 1.13 V to 1.09 V. However, the In/Ti co-doped sample exhibits an even higher photocurrent density of 290 µA cm-2 at 1.23 VRHE and the photocurrent onset potential decreases to 0.93 VRHE, which is attributed to the additional doping and to the surface becoming more favorable to charge separation.

7.
ACS Omega ; 5(51): 33242-33252, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403286

RESUMO

This study evaluates the techno-economic feasibility of five solar-powered concepts for the production of autotrophic microorganisms for food and feed production; the main focus is on three concepts based on hydrogen-oxidizing bacteria (HOB), which are further compared to two microalgae-related concepts. Two locations with markedly different solar conditions are considered (Finland and Morocco), in which Morocco was found to be the most economically competitive for the cultivation of microalgae in open ponds and closed systems (1.4 and 1.9 € kg-1, respectively). Biomass production by combined water electrolysis and HOB cultivation results in higher costs for all three considered concepts. Among these, the lowest production cost of 5.3 € kg-1 is associated with grid-assisted electricity use in Finland, while the highest production cost of >9.1 € kg-1 is determined for concepts using solely photovoltaics and/or photoelectrochemical technology for on-site electricity production and solar-energy conversion to H2 by water electrolysis. All assessed concepts are capital intensive. Furthermore, a sensitivity analysis suggests that the production costs of HOB biomass can be lowered down to 2.1 € kg-1 by optimization of the process parameters among which volumetric productivity, electricity strategy, and electricity costs have the highest cost-saving potentials. The study reveals that continuously available electricity and H2 supply are essential for the development of a viable HOB concept due to the capital intensity of the needed technologies. In addition, volumetric productivity is the key parameter that needs to be optimized to increase the economic competitiveness of HOB production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...