Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroendocrinology ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228127

RESUMO

The caudal neurosecretory system (CNSS) is a neuroendocrine complex, whose existence is specific to fishes. In teleosts, it consists of neurosecretory cells (Dahlgren cells) whose fibers are associated with a neurohemal terminal tissue (urophysis). In other actinopterygians as well as in chondrichthyes, the system is devoid of urophysis, so that Dahlgren cells end in a diffuse neurohemal region. Structurally, it has many similarities with the hypothalamic-neurohypophysial system. However, it differs regarding its position at the caudal end of the spinal cord and the nature of the hormones it secretes, the most notable ones being urotensins. The CNSS was first described more than 60 years ago, but its embryological origin is still hypothetical, and its role is poorly understood. Observations and experimental data gave some evidences of a possible involvement in osmoregulation, stress and reproduction. But one may question the benefit for fish to possess this second neurosecretory system, while the central hypothalamic-pituitary complex already controls such functions. As an introduction of our review, a brief report on the discovery of the CNSS is given. A description of its organization follows, and our review then focuses on the neuroendocrinology of the CNSS with the different factors it produces and secretes. The current knowledge on the ontogenesis and developmental origin of the CNSS is also reported, as well as its evolution. A special focus is finally given on what is known on its potential physiological roles.

2.
Dev Biol ; 496: 36-51, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36736605

RESUMO

Urp1 and Urp2 are two neuropeptides, members of the Urotensin 2 family, that have been recently involved in the control of body axis morphogenesis in zebrafish. They are produced by a population of sensory spinal neurons, called cerebrospinal fluid contacting neurons (CSF-cNs), under the control of signals relying on the Reissner fiber, an extracellular thread bathing in the CSF. Here, we have investigated further the function of Urp1 and Urp2 (Urp1/2) in body axis formation and maintenance. We showed that urp1;urp2 double mutants develop strong body axis defects during larval growth, revealing the redundancy between the two neuropeptides. These defects were similar to those previously reported in uts2r3 mutants. We observed that this phenotype is not associated with congenital defects in vertebrae formation, but by using specific inhibitors, we found that, at least in the embryo, the action of Urp1/2 signaling depends on myosin II contraction. Finally, we provide evidence that while the Urp1/2 signaling is functioning during larval growth, it is dispensable for embryonic development. Taken together, our results show that Urp1/2 signaling is required in larvae to promote correct vertebral body axis, most likely by regulating muscle tone.


Assuntos
Neuropeptídeos , Peixe-Zebra , Animais , Larva , Coluna Vertebral , Morfogênese , Proteínas de Peixe-Zebra
4.
Biol Aujourdhui ; 216(3-4): 89-103, 2022.
Artigo em Francês | MEDLINE | ID: mdl-36744974

RESUMO

The caudal neurosecretory system (CNSS) is a neuroendocrine complex whose existence is specific to fishes. Structurally, it has many similarities with the hypothalamic-neurohypophyseal complex of other vertebrates. However, it differs regarding its position at the caudal end of the spinal cord and the nature of the hormones it secretes, the most important being urotensins. The CNSS was first described more than 60 years ago, but its embryological origin is totally unknown and its role is still poorly understood. Paradoxically, it is almost no longer studied today. Recent developments in imaging and genome editing could make it possible to resume investigations on CNSS in order to solve the mysteries that still surround it.


Title: Le système neurosécréteur caudal, l'autre système « neurohypophysaire ¼ des poissons. Abstract: Le système neurosécréteur caudal (SNSC) est un complexe neuroendocrinien propre aux poissons. Sur le plan structural, il présente de nombreuses similitudes avec le complexe hypothalamo-neurohypophysaire d'autres vertébrés. Il s'en distingue toutefois par sa position, à l'extrémité caudale de la moelle épinière, et par la nature des hormones qu'il sécrète, les plus importantes étant les urotensines. Le SNSC a été décrit pour la première fois il y a plus de 60 ans, mais son origine embryologique est totalement inconnue et son rôle reste mal compris. Paradoxalement, il n'est presque plus étudié aujourd'hui. Les développements récents en imagerie et en génie génétique pourraient justifier la reprise d'investigations sur le SNSC afin de lever les mystères qui continuent de l'entourer.


Assuntos
Sistemas Neurossecretores , Urotensinas , Animais , Peixes , Medula Espinal
5.
Peptides ; 146: 170675, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655691

RESUMO

The urotensin 2 (uts2) gene family consists of four paralogs called uts2, uts2-related peptide (urp), urp1 and urp2. uts2 is known to exert a large array of biological effects, including osmoregulation, control of cardiovascular functions and regulation of endocrine activities. Lately, urp1 and urp2 have been shown to regulate axial straightening during embryogenesis. In contrast, much less is known about the roles of urp. The aim of the present study was to investigate the expression and the functions of urp by using the zebrafish as a model. For this purpose, we determined the expression pattern of the urp gene. We found that urp is expressed in motoneurons of the brainstem and the spinal cord, as in tetrapods. This was confirmed with a new Tg(urp:gfp) fluorescent reporter line. We also generated a urp knockout mutant by using CRISPR/Cas9-mediated genome editing and analysed its locomotor activity in larvae. urp mutant did not exhibit any apparent defect of spontaneous swimming when compared to wild-type. We also tested the idea that urp may represent an intermediary of urp1 and urp2 in their role on axial straightening. We found that the upward bending of the tail induced by the overexpression of urp2 in 24-hpf embryos was not altered in urp mutants. Our results indicate that urp does probably not act as a relay downstream of urp2. In conclusion, the present study showed that zebrafish urp gene is primarily expressed in motoneurons but is apparently dispensable for locomotor activity in the early larval stages.


Assuntos
Larva/metabolismo , Locomoção , Neurônios Motores/metabolismo , Peptídeos/metabolismo , Urotensinas/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Edição de Genes/métodos , Hibridização In Situ , Peixe-Zebra/crescimento & desenvolvimento
6.
Open Biol ; 11(8): 210065, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34375549

RESUMO

Urp1 and Urp2 are two neuropeptides of the urotensin II family identified in teleost fish and mainly expressed in cerebrospinal fluid (CSF)-contacting neurons. It has been recently proposed that Urp1 and Urp2 are required for correct axis formation and maintenance. Their action is thought to be mediated by the receptor Uts2r3, which is specifically expressed in dorsal somites. In support of this view, it has been demonstrated that the loss of uts2r3 results in severe scoliosis in adult zebrafish. In the present study, we report for the first time the occurrence of urp2, but not of urp1, in two tetrapod species of the Xenopus genus. In X. laevis, we show that urp2 mRNA-containing cells are CSF-contacting neurons. Furthermore, we identified utr4, the X. laevis counterparts of zebrafish uts2r3, and we demonstrate that, as in zebrafish, it is expressed in the dorsal somatic musculature. Finally, we reveal that, in X. laevis, the disruption of utr4 results in an abnormal curvature of the antero-posterior axis of the tadpoles. Taken together, our results suggest that the role of the Utr4 signalling pathway in the control of body straightness is an ancestral feature of bony vertebrates and not just a peculiarity of ray-finned fishes.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Receptores Acoplados a Proteínas G/metabolismo , Somatotipos , Urotensinas/metabolismo , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Perfilação da Expressão Gênica , Receptores Acoplados a Proteínas G/genética , Homologia de Sequência , Proteínas de Xenopus/genética , Xenopus laevis
7.
Sci Rep ; 10(1): 15235, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943676

RESUMO

Pharmacological experiments indicate that neuropeptides can effectively tune neuronal activity and modulate locomotor output patterns. However, their functions in shaping innate locomotion often remain elusive. For example, somatostatin has been previously shown to induce locomotion when injected in the brain ventricles but to inhibit fictive locomotion when bath-applied in the spinal cord in vitro. Here, we investigated the role of somatostatin in innate locomotion through a genetic approach by knocking out somatostatin 1.1 (sst1.1) in zebrafish. We automated and carefully analyzed the kinematics of locomotion over a hundred of thousand bouts from hundreds of mutant and control sibling larvae. We found that the deletion of sst1.1 did not impact acousto-vestibular escape responses but led to abnormal exploration. sst1.1 mutant larvae swam over larger distance, at higher speed and performed larger tail bends, indicating that Somatostatin 1.1 inhibits spontaneous locomotion. Altogether our study demonstrates that Somatostatin 1.1 innately contributes to slowing down spontaneous locomotion.


Assuntos
Somatostatina/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Fenômenos Biomecânicos , Comportamento Exploratório/fisiologia , Feminino , Mutação da Fase de Leitura , Técnicas de Inativação de Genes , Larva/fisiologia , Locomoção/fisiologia , Masculino , Deleção de Sequência , Somatostatina/deficiência , Somatostatina/genética , Natação/fisiologia , Gravação em Vídeo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
8.
Antioxid Redox Signal ; 33(17): 1257-1275, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32524825

RESUMO

Significance: Selenoproteins incorporate the essential nutrient selenium into their polypeptide chain. Seven members of this family reside in the endoplasmic reticulum (ER), the exact function of most of which is poorly understood. Especially, how ER-resident selenoproteins control the ER redox and ionic environment is largely unknown. Since alteration of ER function is observed in many diseases, the elucidation of the role of selenoproteins could enhance our understanding of the mechanisms involved in ER homeostasis. Recent Advances: Among selenoproteins, selenoprotein T (SELENOT) is remarkable as the most evolutionarily conserved and the only ER-resident selenoprotein whose gene knockout in mouse is lethal. Recent data indicate that SELENOT contributes to ER homeostasis: reduced expression of SELENOT in transgenic cell and animal models promotes accumulation of reactive oxygen and nitrogen species, depletion of calcium stores, activation of the unfolded protein response and impaired hormone secretion. Critical Issues: SELENOT is anchored to the ER membrane and associated with the oligosaccharyltransferase complex, suggesting that it regulates the early steps of N-glycosylation. Furthermore, it exerts a selenosulfide oxidoreductase activity carried by its thioredoxin-like domain. However, the physiological role of the redox activity of SELENOT is not fully understood. Likewise, the nature of its redox partners needs to be further characterized. Future Directions: Given the impact of ER stress in pathologies such as neurodegenerative, cardiovascular, metabolic and immune diseases, understanding the role of SELENOT and developing derived therapeutic tools such as selenopeptides to improve ER proteostasis and prevent ER stress could contribute to a better management of these diseases.


Assuntos
Retículo Endoplasmático/fisiologia , Genes Essenciais , Homeostase , Oxirredutases/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Animais , Suscetibilidade a Doenças , Estresse do Retículo Endoplasmático , Humanos , Camundongos , Nutrientes/metabolismo , Estresse Oxidativo , Selênio/metabolismo , Transdução de Sinais
9.
J Comp Neurol ; 528(14): 2333-2360, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32141087

RESUMO

Five prosomatostatin genes (PSST1, PSST2, PSST3, PSST5, and PSST6) have been recently identified in elasmobranchs (Tostivint et al., General and Comparative Endocrinology, 2019, 279, 139-147). In order to gain insight into the contribution of each somatostatin to specific nervous systems circuits and behaviors in this important jawed vertebrate group, we studied the distribution of neurons expressing PSST mRNAs in the central nervous system (CNS) of Scyliorhinus canicula using in situ hybridization. Additionally, we combined in situ hybridization with tyrosine hydroxylase (TH) immunochemistry for better characterization of PSST1 and PSST6 expressing populations. We observed differential expression of PSST1 and PSST6, which are the most widely expressed PSST transcripts, in cell populations of many CNS regions, including the pallium, subpallium, hypothalamus, diencephalon, optic tectum, midbrain tegmentum, and rhombencephalon. Interestingly, numerous small pallial neurons express PSST1 and PSST6, although in different populations judging from the colocalization of TH immunoreactivity and PSST6 expression but not with PSST1. We observed expression of PSST1 in cerebrospinal fluid-contacting (CSF-c) neurons of the hypothalamic paraventricular organ and the central canal of the spinal cord. Unlike PSST1 and PSST6, PSST2, and PSST3 are only expressed in cells of the hypothalamus and in some hindbrain lateral reticular neurons, and PSST5 in cells of the region of the entopeduncular nucleus. Comparative data of brain expression of PSST genes indicate that the somatostatinergic system of sharks is the most complex reported in any fish.


Assuntos
Sistema Nervoso Central/metabolismo , Neurônios/metabolismo , Precursores de Proteínas/metabolismo , Tubarões/metabolismo , Somatostatina/metabolismo , Transcriptoma , Animais
10.
Physiol Rev ; 100(2): 869-943, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31625459

RESUMO

In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.


Assuntos
Evolução Molecular , Duplicação Gênica , Genoma Humano , Gonadotropinas/genética , Gônadas/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Células Neuroendócrinas/fisiologia , Reprodução/genética , Animais , Gonadotropinas/metabolismo , Gônadas/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Células Neuroendócrinas/metabolismo , Filogenia , Especificidade da Espécie
11.
Gen Comp Endocrinol ; 279: 139-147, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30836103

RESUMO

The somatostatin (SST) family members are a group of neuropeptides that are best known for their role in the regulation of growth, development and metabolism. The occurrence of six paralogous SST genes named SST1, SST2, SST3, SST4, SST5 and SST6 has been reported in vertebrates. It has been proposed that SST1, SST2 and SST5 arose in 2R from a common ancestral gene. SST3 and SST6 would have been subsequently generated by tandem duplications of the SST1 and SST2 genes respectively, at the base of the actinopterygian lineage. SST4 is thought to have appeared more recently from SST1, in teleost-specific 3R. In order to gain more insights into the SST gene family in vertebrates, we sought to identify which paralogs of this family are present in cartilaginous fish. For this purpose, we first searched the recently available genome and transcriptome databases from the catshark Scyliorhinus canicula. In a previous study, three S. canicula SST genes, called at that time SSTa, SSTb and SSTc, were identified and proposed to correspond to SST1, SST5 and SST2 respectively. In the present work, two additional SST genes, called SSTd and SSTe, were found in S. canicula plus two other chondrichtyan species, elephant shark (Callorhinchus milii) and whale shark (Rhincodon typus). Phylogeny and synteny analyses were then carried out in order to reveal the evolutionary relationships of SSTd and SSTe with other vertbrates SSTs. We showed that SSTd and SSTe correspond to SST2 and SST3 respectively, while SSTc corresponds to SST6 and not to SST2 as initially proposed. Our investigations in other vertebrate species also led us to find that the so-called SST2 gene in chicken, lungfish, sturgeons and teleosts actually corresponds to SST6. Conversely, the so-called SST6 gene in actinopterygians corresponds to SST2. Taken together, our results suggest that: i) SST3 and SST6 were already present in the gnathostome ancestor, much earlier than previously thought; ii) SST6 was also present in the tetrapod ancestor and still occurs in living birds; with this respect, it is likely that SST6 was independently lost several times during evolution: in amphibians, squamates and mammals; iii) SST2, SST3 and SST5 were probably lost in euteleosts, sarcopterygians and tetrapods, respectively.


Assuntos
Somatostatina/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , DNA Complementar/genética , Loci Gênicos , Genoma , Especificidade de Órgãos/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Somatostatina/química , Sintenia/genética , Transcriptoma/genética
12.
Front Neurosci ; 12: 607, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30237760

RESUMO

The neuropeptide gonadotropin-releasing hormone (GnRH) plays an important role in the control of reproductive functions. Vertebrates possess multiple GnRH forms that are classified into three main groups, namely GnRH1, GnRH2, and GnRH3. In order to gain more insights into the GnRH gene family in vertebrates, we sought to identify which paralogs of this family are present in cartilaginous fish. For this purpose, we searched the genomes and/or transcriptomes of three representative species of this group, the small-spotted catshark, Scyliorhinus canicula, the whale shark, Rhincodon typus and the elephant shark Callorhinchus milii. In each species, we report the identification of three GnRH genes. In catshark and whale shark, phylogenetic and synteny analysis showed that these three genes correspond to GnRH1, GnRH2, and GnRH3. In both species, GnRH1 was found to encode a novel form of GnRH whose primary structure was determined as follows: QHWSFDLRPG. In elephant shark, the three genes correspond to GnRH1a and GnRH1b, two copies of the GnRH1 gene, plus GnRH2. 3D structure prediction of the chondrichthyan GnRH-associated peptides (GAPs) revealed that catshark GAP1, GAP2, and elephant shark GAP2 peptides exhibit a helix-loop-helix (HLH) structure. This structure observed for many osteichthyan GAP1 and GAP2, may convey GAP biological activity. This HLH structure could not be observed for elephant shark GAP1a and GAP1b. As for all other GAP3 described so far, no typical 3D HLH structure was observed for catshark nor whale shark GAP3. RT-PCR analysis revealed that GnRH1, GnRH2, and GnRH3 genes are differentially expressed in the catshark brain. GnRH1 mRNA appeared predominant in the diencephalon while GnRH2 and GnRH3 mRNAs seemed to be most abundant in the mesencephalon and telencephalon, respectively. Taken together, our results show that the GnRH gene repertoire of the vertebrate ancestor was entirely conserved in the chondrichthyan lineage but that the GnRH3 gene was probably lost in holocephali. They also suggest that the three GnRH neuronal systems previously described in the brain of bony vertebrates are also present in cartilaginous fish.

13.
J Neurosci ; 38(35): 7713-7724, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30037834

RESUMO

CSF-contacting (CSF-c) cells are present in the walls of the brain ventricles and the central canal of the spinal cord and found throughout the vertebrate phylum. We recently identified ciliated somatostatin-/GABA-expressing CSF-c neurons in the lamprey spinal cord that act as pH sensors as well as mechanoreceptors. In the same neuron, acidic and alkaline responses are mediated through ASIC3-like and PKD2L1 channels, respectively. Here, we investigate the functional properties of the ciliated somatostatin-/GABA-positive CSF-c neurons in the hypothalamus by performing whole-cell recordings in hypothalamic slices. Depolarizing current pulses readily evoked action potentials, but hypothalamic CSF-c neurons had no or a very low level of spontaneous activity at pH 7.4. They responded, however, with membrane potential depolarization and trains of action potentials to small deviations in pH in both the acidic and alkaline direction. Like in spinal CSF-c neurons, the acidic response in hypothalamic cells is mediated via ASIC3-like channels. In contrast, the alkaline response appears to depend on connexin hemichannels, not on PKD2L1 channels. We also show that hypothalamic CSF-c neurons respond to mechanical stimulation induced by fluid movements along the wall of the third ventricle, a response mediated via ASIC3-like channels. The hypothalamic CSF-c neurons extend their processes dorsally, ventrally, and laterally, but as yet, the effects exerted on hypothalamic circuits are unknown. With similar neurons being present in rodents, the pH- and mechanosensing ability of hypothalamic CSF-c neurons is most likely conserved throughout vertebrate phylogeny.SIGNIFICANCE STATEMENT CSF-contacting neurons are present in all vertebrates and are located mainly in the hypothalamic area and the spinal cord. Here, we report that the somatostatin-/GABA-expressing CSF-c neurons in the lamprey hypothalamus sense bidirectional deviations in the extracellular pH and do so via different molecular mechanisms. They also serve as mechanoreceptors. The hypothalamic CSF-c neurons have extensive axonal ramifications and may decrease the level of motor activity via release of somatostatin. In conclusion, hypothalamic somatostatin-/GABA-expressing CSF-c neurons, as well as their spinal counterpart, represent a novel homeostatic mechanism designed to sense any deviation from physiological pH and thus constitute a feedback regulatory system intrinsic to the CNS, possibly serving a protective role from damage caused by changes in pH.


Assuntos
Canais Iônicos Sensíveis a Ácido/fisiologia , Líquido Cefalorraquidiano/fisiologia , Concentração de Íons de Hidrogênio , Hipotálamo/citologia , Mecanorreceptores/fisiologia , Neurônios/fisiologia , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Potenciais de Ação , Animais , Conexinas/antagonistas & inibidores , Conexinas/fisiologia , Feminino , Junções Comunicantes/fisiologia , Lampreias , Masculino , Movimento (Física) , Técnicas de Patch-Clamp , Estimulação Física , Somatostatina/análise , Estresse Mecânico , Terceiro Ventrículo , Ácido gama-Aminobutírico/análise
14.
Artigo em Inglês | MEDLINE | ID: mdl-29942283

RESUMO

In mammals, neurokinin B (NKB) is a short peptide encoded by the gene tac3. It is involved in the brain control of reproduction by stimulating gonadotropin-releasing hormone (GnRH) neurons, mainly via kisspeptin. We investigated tac3 genes and peptides in a basal teleost, the European eel, which shows an atypical blockade of the sexual maturation at a prepubertal stage. Two tac3 paralogous genes (tac3a and tac3b) were identified in the eel genome, each encoding two peptides (NKBa or b and NKB-related peptide NKB-RPa or b). Amino acid sequence of eel NKBa is identical to human NKB, and the three others are novel peptide sequences. The four eel peptides present the characteristic C-terminal tachykinin sequence, as well as a similar alpha helix 3D structure. Tac3 genes were identified in silico in 52 species of vertebrates, and a phylogeny analysis was performed on the predicted TAC3 pre-pro-peptide sequences. A synteny analysis was also done to further assess the evolutionary history of tac3 genes. Duplicated tac3 genes in teleosts likely result from the teleost-specific whole genome duplication (3R). Among teleosts, TAC3b precursor sequences are more divergent than TAC3a, and a loss of tac3b gene would have even occurred in some teleost lineages. NKB-RP peptide, encoded beside NKB by tac3 gene in actinopterygians and basal sarcopterygians, would have been lost in ancestral amniotes. Tissue distribution of eel tac3a and tac3b mRNAs showed major expression of both transcripts in the brain especially in the diencephalon, as analyzed by specific qPCRs. Human NKB has been tested in vitro on primary culture of eel pituitary cells. Human NKB dose-dependently inhibited the expression of lhß, while having no effect on other glycoprotein hormone subunits (fshß, tshß, and gpα) nor on gh. Human NKB also dose-dependently inhibited the expression of GnRH receptor (gnrh-r2). The four eel peptides have been synthesized and also tested in vitro. They all inhibited the expression of both lhß and of gnrh-r2. This reveals a potential dual inhibitory role of the four peptides encoded by the two tac3 genes in eel reproduction, exerted at the pituitary level on both luteinizing hormone and GnRH receptor.

15.
Ann Clin Transl Neurol ; 5(5): 510-523, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29761115

RESUMO

OBJECTIVE: DEPDC5 was identified as a major genetic cause of focal epilepsy with deleterious mutations found in a wide range of inherited forms of focal epilepsy, associated with malformation of cortical development in certain cases. Identification of frameshift, truncation, and deletion mutations implicates haploinsufficiency of DEPDC5 in the etiology of focal epilepsy. DEPDC5 is a component of the GATOR1 complex, acting as a negative regulator of mTOR signaling. METHODS: Zebrafish represents a vertebrate model suitable for genetic analysis and drug screening in epilepsy-related disorders. In this study, we defined the expression of depdc5 during development and established an epilepsy model with reduced Depdc5 expression. RESULTS: Here we report a zebrafish model of Depdc5 loss-of-function that displays a measurable behavioral phenotype, including hyperkinesia, circular swimming, and increased neuronal activity. These phenotypic features persisted throughout embryonic development and were significantly reduced upon treatment with the mTORC1 inhibitor, rapamycin, as well as overexpression of human WT DEPDC5 transcript. No phenotypic rescue was obtained upon expression of epilepsy-associated DEPDC5 mutations (p.Arg487* and p.Arg485Gln), indicating that these mutations cause a loss of function of the protein. INTERPRETATION: This study demonstrates that Depdc5 knockdown leads to early-onset phenotypic features related to motor and neuronal hyperactivity. Restoration of phenotypic features by WT but not epilepsy-associated Depdc5 mutants, as well as by mTORC1 inhibition confirm the role of Depdc5 in the mTORC1-dependent molecular cascades, defining this pathway as a potential therapeutic target for DEPDC5-inherited forms of focal epilepsy.

16.
Elife ; 72018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29845935

RESUMO

In vertebrates, functional motoneurons are defined as differentiated neurons that are connected to a central premotor network and activate peripheral muscle using acetylcholine. Generally, motoneurons and muscles develop simultaneously during embryogenesis. However, during Xenopus metamorphosis, developing limb motoneurons must reach their target muscles through the already established larval cholinergic axial neuromuscular system. Here, we demonstrate that at metamorphosis onset, spinal neurons retrogradely labeled from the emerging hindlimbs initially express neither choline acetyltransferase nor vesicular acetylcholine transporter. Nevertheless, they are positive for the motoneuronal transcription factor Islet1/2 and exhibit intrinsic and axial locomotor-driven electrophysiological activity. Moreover, the early appendicular motoneurons activate developing limb muscles via nicotinic antagonist-resistant, glutamate antagonist-sensitive, neuromuscular synapses. Coincidently, the hindlimb muscles transiently express glutamate, but not nicotinic receptors. Subsequently, both pre- and postsynaptic neuromuscular partners switch definitively to typical cholinergic transmitter signaling. Thus, our results demonstrate a novel context-dependent re-specification of neurotransmitter phenotype during neuromuscular system development.


Assuntos
Acetilcolina/metabolismo , Extremidades/inervação , Metamorfose Biológica , Músculo Esquelético/inervação , Neurotransmissores/metabolismo , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo , Animais , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Atividade Motora , Neurônios Motores/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Medula Espinal/metabolismo , Transmissão Sináptica , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética
17.
Gen Comp Endocrinol ; 237: 89-97, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27524287

RESUMO

Somatostatins (SSs) are a structurally diverse family of neuropeptides that play important roles in the regulation of growth, development and metabolism in vertebrates. It has been recently proposed that the common ancestor of gnathostomes possessed three SS genes, namely SS1, SS2 and SS5. SS1 and SS2 are still present in most extant gnathostome species investigated so far while SS5 primarily occurs in chondrichthyes, actinopterygians and actinistia but not in tetrapods. Very little is known about the repertoire of SSs in cyclostomes, which are extant jawless vertebrates. In the present study, we report the cloning of the cDNAs encoding three distinct lamprey SS variants that we call SSa, SSb and SSc. SSa and SSb correspond to the two SS variants previously characterized in lamprey, while SSc appears to be a totally novel one. SSa exhibits the same sequence as gnathostome SS1. SSb differs from SSa by only one substitution (Thr12→Ser). SSc exhibits a totally unique structure (ANCRMFYWKTMAAC) that shares only 50% identity with SSa and SSb. SSa, SSb and SSc precursors do not exhibit any appreciable sequence similarity outside the C-terminal region containing the SS sequence. Phylogenetic analyses failed to clearly assign orthology relationships between lamprey and gnathostome SS genes. Synteny analysis suggests that the SSc gene arose before the split of the three gnathostome genes SS1, SS2 and SS5.


Assuntos
Lampreias/genética , Somatostatina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Evolução Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Somatostatina/química , Sintenia/genética
18.
Curr Biol ; 26(10): 1346-51, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27133867

RESUMO

For survival of the organism, acid-base homeostasis is vital [1, 2]. The respiratory and renal systems are central to this control. Here we describe a novel mechanism, intrinsic to the spinal cord, with sensors that detect pH changes and act to restore pH to physiological levels by reducing motor activity. This pH sensor consists of somatostatin-expressing cerebrospinal fluid-contacting (CSF-c) neurons, which target the locomotor network. They have a low level of activity at pH 7.4. However, at both alkaline and acidic pH, the activity of the individual CSF-c neuron is markedly enhanced through the action of two separate channel subtypes. The alkaline response depends on PKD2L1 channels that have a large conductance and an equilibrium potential around 0 mV, both characteristics of mouse PKD2L1 channels [3-5]. The acidic response is due to an activation of ASIC3 [6]. The discharge pattern of the CSF-c neurons is U-shaped with a minimum frequency around pH 7.4 and a marked increase already at slightly lower and higher pH. During ongoing locomotor activity in the isolated spinal cord, both an increase and as a decrease of pH will reduce the locomotor burst rate. A somatostatin antagonist blocks these effects, suggesting that CSF-c neurons are responsible for the suppression of locomotor activity. CSF-c neurons thus represent a novel innate homeostatic mechanism, designed to sense any deviation from physiological pH and to respond by causing a depression of the motor activity. Because CSF-c neurons are found in all vertebrates, their pH-sensing function is most likely conserved.


Assuntos
Lampreias/fisiologia , Locomoção , Medula Espinal/fisiologia , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Feminino , Concentração de Íons de Hidrogênio , Masculino , Potenciais da Membrana , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Análise de Sequência de DNA
19.
Brain Res ; 1631: 165-93, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26638835

RESUMO

Multichannel processing of environmental information constitutes a fundamental basis of functioning of sensory systems in the vertebrate brain. Two distinct parallel visual systems - the tectofugal and thalamofugal exist in all amniotes. The vertebrate central nervous system contains high concentrations of intracellular calcium-binding proteins (CaBPrs) and each of them has a restricted expression pattern in different brain regions and specific neuronal subpopulations. This study aimed at describing the patterns of distribution of parvalbumin (PV) and calbindin (CB) in the visual thalamic and mesencephalic centers of the pigeon (Columba livia). We used a combination of immunohistochemistry and double labeling immunofluorescent technique. Structures studied included the thalamic relay centers involved in the tectofugal (nucleus rotundus, Rot) and thalamofugal (nucleus geniculatus lateralis, pars dorsalis, GLd) visual pathways as well as pretectal, mesencephalic, isthmic and thalamic structures inducing the driver and/or modulatory action to the visual processing. We showed that neither of these proteins was unique to the Rot or GLd. The Rot contained i) numerous PV-immunoreactive (ir) neurons and a dense neuropil, and ii) a few CB-ir neurons mostly located in the anterior dorsal part and associated with a light neuropil. These latter neurons partially overlapped with the former and some of them colocalized both proteins. The distinct subnuclei of the GLd were also characterized by different patterns of distribution of CaBPrs. Some (nucleus dorsolateralis anterior, pars magnocellularis, DLAmc; pars lateralis, DLL; pars rostrolateralis, DLAlr; nucleus lateralis anterior thalami, LA) contained both CB- and PV-ir neurons in different proportions with a predominance of the former in the DLAmc and DLL. The nucleus lateralis dorsalis of nuclei optici principalis thalami only contained PV-ir neurons and a neuropil similar to the interstitial pretectal/thalamic nuclei of the tectothalamic tract, nucleus pretectalis and thalamic reticular nucleus. The overlapping distribution of PV and CB immunoreactivity was typical for the pretectal nucleus lentiformis mesencephali and the nucleus ectomamillaris as well as for the visual isthmic nuclei. The findings are discussed in the light of the contributive role of the phylogenetic and functional factors determining the circuits׳ specificity of the different CaBPr types.


Assuntos
Calbindinas/metabolismo , Columbidae/metabolismo , Mesencéfalo/metabolismo , Parvalbuminas/metabolismo , Tálamo/metabolismo , Animais , Encéfalo/metabolismo , Mapeamento Encefálico , Núcleo Celular/metabolismo , Columbidae/genética , Imuno-Histoquímica , Neurônios/metabolismo , Filogenia , Área Pré-Tectal/metabolismo , Núcleos Talâmicos/metabolismo , Vias Visuais
20.
PLoS One ; 10(3): e0119290, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25781313

RESUMO

Urotensin II (UII) is an evolutionarily conserved neuropeptide initially isolated from teleost fish on the basis of its smooth muscle-contracting activity. Subsequent studies have demonstrated the occurrence of several UII-related peptides (URPs), such that the UII family is now known to include four paralogue genes called UII, URP, URP1 and URP2. These genes probably arose through the two rounds of whole genome duplication that occurred during early vertebrate evolution. URP has been identified both in tetrapods and teleosts. In contrast, URP1 and URP2 have only been observed in ray-finned and cartilaginous fishes, suggesting that both genes were lost in the tetrapod lineage. In the present study, the distribution of urp1 mRNA compared to urp2 mRNA is reported in the central nervous system of zebrafish. In the spinal cord, urp1 and urp2 mRNAs were mainly colocalized in the same cells. These cells were also shown to be GABAergic and express the gene encoding the polycystic kidney disease 2-like 1 (pkd2l1) channel, indicating that they likely correspond to cerebrospinal fluid-contacting neurons. In the hindbrain, urp1-expressing cells were found in the intermediate reticular formation and the glossopharyngeal-vagal motor nerve nuclei. We also showed that synthetic URP1 and URP2 were able to induce intracellular calcium mobilization in human UII receptor (hUT)-transfected CHO cells with similar potencies (pEC50=7.99 and 7.52, respectively) albeit at slightly lower potencies than human UII and mammalian URP (pEC50=9.44 and 8.61, respectively). The functional redundancy of URP1 and URP2 as well as the colocalization of their mRNAs in the spinal cord suggest the robustness of this peptidic system and its physiological importance in zebrafish.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Rombencéfalo/metabolismo , Medula Espinal/metabolismo , Urotensinas/metabolismo , Peixe-Zebra/metabolismo , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Imunofluorescência , Humanos , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular , Neurônios/citologia , Hormônios Peptídicos/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rombencéfalo/citologia , Medula Espinal/citologia , Urotensinas/genética , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...