Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Drug Metab Rev ; 56(2): 145-163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478383

RESUMO

Drug withdrawal post-marketing due to cardiotoxicity is a major concern for drug developers, regulatory agencies, and patients. One common mechanism of cardiotoxicity is through inhibition of cardiac ion channels, leading to prolongation of the QT interval and sometimes fatal arrythmias. Recently, oxylipin signaling compounds have been shown to bind to and alter ion channel function, and disruption in their cardiac levels may contribute to QT prolongation. Cytochrome P450 2J2 (CYP2J2) is the predominant CYP isoform expressed in cardiomyocytes, where it oxidizes arachidonic acid to cardioprotective epoxyeicosatrienoic acids (EETs). In addition to roles in vasodilation and angiogenesis, EETs bind to and activate various ion channels. CYP2J2 inhibition can lower EET levels and decrease their ability to preserve cardiac rhythm. In this review, we investigated the ability of known CYP inhibitors to cause QT prolongation using Certara's Drug Interaction Database. We discovered that among the multiple CYP isozymes, CYP2J2 inhibitors were more likely to also be QT-prolonging drugs (by approximately 2-fold). We explored potential binding interactions between these inhibitors and CYP2J2 using molecular docking and identified four amino acid residues (Phe61, Ala223, Asn231, and Leu402) predicted to interact with QT-prolonging drugs. The four residues are located near the opening of egress channel 2, highlighting the potential importance of this channel in CYP2J2 binding and inhibition. These findings suggest that if a drug inhibits CYP2J2 and interacts with one of these four residues, then it may have a higher risk of QT prolongation and more preclinical studies are warranted to assess cardiovascular safety.


Assuntos
Citocromo P-450 CYP2J2 , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450 , Síndrome do QT Longo , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Animais
3.
Mol Cancer Ther ; 23(4): 464-477, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38151817

RESUMO

Histone deacetylase inhibitors (HDACi) are part of a growing class of epigenetic therapies used for the treatment of cancer. Although HDACis are effective in the treatment of T-cell lymphomas, treatment of solid tumors with this class of drugs has not been successful. Overexpression of the multidrug resistance protein P-glycoprotein (P-gp), encoded by ABCB1, is known to confer resistance to the HDACi romidepsin in vitro, yet increased ABCB1 expression has not been associated with resistance in patients, suggesting that other mechanisms of resistance arise in the clinic. To identify alternative mechanisms of resistance to romidepsin, we selected MCF-7 breast cancer cells with romidepsin in the presence of the P-gp inhibitor verapamil to reduce the likelihood of P-gp-mediated resistance. The resulting cell line, MCF-7 DpVp300, does not express P-gp and was found to be selectively resistant to romidepsin but not to other HDACis such as belinostat, panobinostat, or vorinostat. RNA-sequencing analysis revealed upregulation of the mRNA coding for the putative methyltransferase, METTL7A, whose paralog, METTL7B, was previously shown to methylate thiol groups on hydrogen sulfide and captopril. As romidepsin has a thiol as the zinc-binding moiety, we hypothesized that METTL7A could inactivate romidepsin and other thiol-based HDACis via methylation of the thiol group. We demonstrate that expression of METTL7A or METTL7B confers resistance to thiol-based HDACis and that both enzymes are capable of methylating thiol-containing HDACis. We thus propose that METTL7A and METTL7B confer resistance to thiol-based HDACis by methylating and inactivating the zinc-binding thiol.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Metiltransferases/metabolismo , Neoplasias/tratamento farmacológico , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Zinco
4.
J Med Chem ; 66(20): 13859, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37844216
5.
Metabolites ; 13(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37755306

RESUMO

Changes in the maternal metabolome, and specifically the maternal lipidome, that occur during pregnancy are relatively unknown. The objective of this investigation was to evaluate the effects of pregnancy on sphingolipid levels using metabolomics analysis followed by confirmational, targeted quantitative analysis. We focused on three subclasses of sphingolipids: ceramides, sphingomyelins, and sphingosines. Forty-seven pregnant women aged 18 to 50 years old participated in this study. Blood samples were collected on two study days for metabolomics analysis. The pregnancy samples were collected between 25 and 28 weeks of gestation and the postpartum study day samples were collected ≥3 months postpartum. Each participant served as their own control. These samples were analyzed using a Ultra-performance liquid chromatography/mass spectroscopy/mass spectroscopy (UPLC/MS/MS) assay that yielded semi-quantitative peak area values that were used to compare sphingolipid levels between pregnancy and postpartum. Following this lipidomic analysis, quantitative LC/MS/MS targeted/confirmatory analysis was performed on the same study samples. In the metabolomic analysis, 43 sphingolipid metabolites were identified and their levels were assessed using relative peak area values. These profiled sphingolipids fell into three categories: ceramides, sphingomyelins, and sphingosines. Of the 43 analytes measured, 35 were significantly different during pregnancy (p < 0.05) (including seven ceramides, 26 sphingomyelins, and two sphingosines) and 32 were significantly higher during pregnancy compared to postpartum. Following metabolomics, a separate quantitative analysis was performed and yielded quantified concentration values for 23 different sphingolipids, four of which were also detected in the metabolomics study. Quantitative analysis supported the metabolomics results with 17 of the 23 analytes measured found to be significantly different during pregnancy including 11 ceramides, four sphingomyelins, and two sphingosines. Fourteen of these were significantly higher during pregnancy. Our data suggest an overall increase in plasma sphingolipid concentrations with possible implications in endothelial function, gestational diabetes mellitus (GDM), intrahepatic cholestasis of pregnancy, and fetal development. This study provides evidence for alterations in maternal sphingolipid metabolism during pregnancy.

6.
Drug Metab Dispos ; 51(11): 1474-1482, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37550070

RESUMO

Cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of >20% of marketed drugs. CYP2D6 expression and activity exhibit high interindividual variability and is induced during pregnancy. The farnesoid X receptor (FXR) is a transcriptional regulator of CYP2D6 that is activated by bile acids. In pregnancy, elevated plasma bile acid concentrations are associated with maternal and fetal risks. However, modest changes in bile acid concentrations may occur during healthy pregnancy, thereby altering FXR signaling. A previous study demonstrated that hepatic tissue concentrations of bile acids positively correlated with the hepatic mRNA expression of CYP2D6. This study sought to characterize the plasma bile acid metabolome in healthy women (n = 47) during midpregnancy (25-28 weeks gestation) and ≥3 months postpartum and to determine if plasma bile acids correlate with CYP2D6 activity. It is hypothesized that during pregnancy, plasma bile acids would favor less hydrophobic bile acids (cholic acid vs. chenodeoxycholic acid) and that plasma concentrations of cholic acid and its conjugates would positively correlate with the urinary ratio of dextrorphan/dextromethorphan. At 25-28 weeks gestation, taurine-conjugated bile acids comprised 23% of the quantified serum bile acids compared with 7% ≥3 months postpartum. Taurocholic acid positively associated with the urinary ratio of dextrorphan/dextromethorphan, a biomarker of CYP2D6 activity. Collectively, these results confirm that the bile acid plasma metabolome differs between pregnancy and postpartum and provide evidence that taurocholic acid may impact CYP2D6 activity during pregnancy. SIGNIFICANCE STATEMENT: Bile acid homeostasis is altered in pregnancy, and plasma concentrations of taurocholic acid positively correlate with CYP2D6 activity. Differences between plasma and/or tissue concentrations of farnesoid X receptor ligands such as bile acids may contribute to the high interindividual variability in CYP2D6 expression and activity.


Assuntos
Citocromo P-450 CYP2D6 , Dextrometorfano , Humanos , Feminino , Gravidez , Citocromo P-450 CYP2D6/metabolismo , Dextrometorfano/metabolismo , Dextrorfano , Ácido Taurocólico , Período Pós-Parto
7.
Adv Pharmacol ; 97: 201-227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37236759

RESUMO

The seminal discovery that cytochrome P450 enzymes (CYPs) can oxidize polyunsaturated fatty acids (PUFAs) sparked a new area of research aimed at discovering the role of these metabolites in cardiac physiology and pathophysiology. CYPs metabolize arachidonic acid, an ω-6 PUFA, to alcohols and epoxides with the latter providing cardioprotection following myocardial infarction, hypertrophy, and diabetes-induced cardiomyopathy through their anti-inflammatory, vasodilatory and antioxidant properties. Despite their protective properties, the use of EETs as therapeutic agents is hampered mainly by their rapid hydrolysis to less active vicinal diols by soluble epoxide hydrolase (sEH). Several approaches have been investigated to prolong EET signaling effects using small molecule sEH inhibitors, chemically and biologically stable analogs of EETs and more recently, through the development of an sEH vaccine. Alternatively, research investigating the cardioprotective outcomes of ω-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), mainly focused on dietary intake or supplementation studies. EPA and DHA have overlapping but distinct effects on myocardial function and merit separate studies to fully understand their mechanism of cardiac protection. In contrast to EETs, relatively fewer studies examined the protective mechanisms of EPA and DHA derived epoxides to determine if some protective effects are in part due to the CYP mediated downstream metabolites. The actions of CYPs on PUFAs generate potent oxylipins utilizing diverse cardioprotective mechanisms and the extent of their full potential will be important for the future development of therapeutics to prevent or treat cardiovascular disease.


Assuntos
Ácidos Graxos Ômega-3 , Oxilipinas , Humanos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/uso terapêutico , Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Compostos de Epóxi
8.
Drug Metab Dispos ; 51(8): 1024-1034, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37137720

RESUMO

S-methylation of drugs containing thiol-moieties often alters their activity and results in detoxification. Historically, scientists attributed methylation of exogenous aliphatic and phenolic thiols to a putative S-adenosyl-L-methionine (SAM)-dependent membrane-associated enzyme referred to as thiol methyltransferase (TMT). This putative TMT appeared to have a broad substrate specificity and methylated the thiol metabolite of spironolactone, mertansine, ziprasidone, captopril, and the active metabolites of the thienopyridine prodrugs, clopidogrel, and prasugrel. Despite TMT's role in the S-methylation of clinically relevant drugs, the enzyme(s) responsible for this activity remained unknown. We recently identified methyltransferase-like protein 7B (METTL7B) as an alkyl thiol methyltransferase. METTL7B is an endoplasmic reticulum-associated protein with similar biochemical properties and substrate specificity to the putative TMT. Yet, the historic TMT inhibitor 2,3-dichloro-α-methylbenzylamine (DCMB) did not inhibit METTL7B, indicating that multiple enzymes contribute to TMT activity. Here we report that methyltransferase-like protein 7A (METTL7A), an uncharacterized member of the METTL7 family, is also a SAM-dependent thiol methyltransferase. METTL7A exhibits similar biochemical properties to METTL7B and putative TMT, including inhibition by DCMB (IC50 = 1.17 µM). Applying quantitative proteomics to human liver microsomes and gene modulation experiments in HepG2 and HeLa cells, we determined that TMT activity correlates closely with METTL7A and METTL7B protein levels. Furthermore, purification of a novel His-GST-tagged recombinant protein and subsequent activity experiments prove that METTL7A can selectively methylate exogenous thiol-containing substrates, including 7α-thiospironolactone, dithiothreitol, 4-chlorothiophenol, and mertansine. We conclude that the METTL7 family encodes for two enzymes, METTL7A and METTL7B, which are now renamed thiol methyltransferase 1A (TMT1A) and thiol methyltransferase 1B (TMT1B), respectively, that are responsible for thiol methylation activity in human liver microsomes. SIGNIFICANCE STATEMENT: We identified methyltransferase-like protein 7A (thiol methyltransferase 1A) and methyltransferase-like protein 7B (thiol methyltransferase 1B) as the enzymes responsible for the microsomal alkyl thiol methyltransferase (TMT) activity. These are the first two enzymes directly associated with microsomal TMT activity. S-methylation of commonly prescribed thiol-containing drugs alters their pharmacological activity and/or toxicity, and identifying the enzymes responsible for this activity will improve our understanding of the drug metabolism and pharmacokinetic (DMPK) properties of alkyl- or phenolic thiol-containing therapeutics.


Assuntos
Fígado , Metiltransferases , Humanos , Células HeLa , Metiltransferases/metabolismo , Fígado/metabolismo , Proteínas Recombinantes , Compostos de Sulfidrila
9.
Life Sci ; 322: 121625, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001802

RESUMO

AIMS: Pregnancy alters multiple physiological processes including angiogenesis, vasodilation, inflammation, and cellular redox, which are partially modulated by the gasotransmitters hydrogen sulfide (H2S) and nitric oxide (NO). In this study, we sought to determine how plasma levels of H2S, NO, and the H2S-related metabolites thiocyanate (SCN-), and methanethiol (CH3SH) change during pregnancy progression. MATERIALS AND METHODS: Plasma was collected from 45 women at three points: 25-28 weeks gestation, 28-32 week gestation, and at ≥3 months postpartum. Plasma levels of H2S, SCN-, and CH3SH were measured following derivatization using monobromobimane followed by LC-MS/MS. Plasma NO was measured indirectly using the Griess reagent. KEY FINDINGS: NO and SCN- were significantly lower in women at 25-28 weeks gestation and 28-32 weeks gestation than postpartum while plasma H2S levels were significantly lower at 28-32 weeks gestation than postpartum. No significant differences were observed in CH3SH. SIGNIFICANCE: Previous reports demonstrated that the production of H2S and NO are stimulated during pregnancy, but we observed lower levels during pregnancy compared to postpartum. Previous reports on NO have been mixed, but given the related effects of H2S and NO, it is expected that their levels would be higher during pregnancy vs. postpartum. Future studies determining the mechanism for decreased H2S and NO during pregnancy will elucidate the role of these gasotransmitters during normal and pathological progression of pregnancy.


Assuntos
Gasotransmissores , Sulfeto de Hidrogênio , Gravidez , Humanos , Feminino , Estados Unidos , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Gasotransmissores/metabolismo , Tiocianatos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Período Pós-Parto
10.
Metabolites ; 13(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36837861

RESUMO

Limited data are available on the effects of pregnancy on the maternal metabolome. Therefore, the objective of this study was to use metabolomics analysis to determine pathways impacted by pregnancy followed by targeted confirmatory analysis to provide more powerful conclusions about metabolic alterations during pregnancy. Forty-seven pregnant women, 18-50 years of age were included in this study, with each subject serving as their own control. Plasma samples were collected between 25 and 28 weeks gestation and again ≥3 months postpartum for metabolomics analysis utilizing an HILIC/UHPLC/MS/MS assay with confirmatory targeted specific concentration analysis for 10 of the significantly altered amino acids utilizing an LC/MS assay. Principle component analysis (PCA) on metabolomics data clearly separated pregnant and postpartum groups and identified outliers in a preliminary assessment. Of the 980 metabolites recorded, 706 were determined to be significantly different between pregnancy and postpartum. Pathway analysis revealed three significantly impacted pathways, arginine biosynthesis (p = 2 × 10-5 and FDR = 1 × 10-3), valine, leucine, and isoleucine metabolism (p = 2 × 10-5 and FDR = 2 × 10-3), and xanthine metabolism (p = 4 × 10-5 and FDR = 4 × 10-3). Of these we focused analysis on arginine biosynthesis and branched-chain amino acid (BCAA) metabolism due to their clinical importance and interconnected roles in amino acid metabolism. In the confirmational analysis, 7 of 10 metabolites were confirmed as significant and all 10 confirmed the direction of change of concentrations observed in the metabolomics analysis. The data support an alteration in urea nitrogen disposition and amino acid metabolism during pregnancy. These changes could also impact endogenous nitric oxide production and contribute to diseases of pregnancy. This study provides evidence for changes in both the ammonia-urea nitrogen and the BCAA metabolism taking place during pregnancy.

11.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36293289

RESUMO

CYP2J2 is the main epoxygenase in the heart that is responsible for oxidizing arachidonic acid to cis-epoxyeicosatrienoic acids (EETs). Once formed, EETs can then be hydrolyzed by soluble epoxide hydrolase (sEH, encoded by EPHX2) or re-esterified back to the membrane. EETs have several cardioprotective properties and higher levels are usually associated with better cardiac outcomes/prognosis. This study investigates how cardiovascular disease (CVD) can influence total EET levels by altering protein expression and activity of enzymes involved in their biosynthesis and degradation. Diseased ventricular cardiac tissues were collected from patients receiving Left Ventricular Assist Device (LVAD) or heart transplants and compared to ventricular tissue from controls free of CVD. EETs, and enzymes involved in EETs biosynthesis and degradation, were measured using mass spectrometric assays. Terfenadine hydroxylation was used to probe CYP2J2 activity. Significantly higher cis- and trans-EET levels were observed in control cardiac tissue (n = 17) relative to diseased tissue (n = 24). Control cardiac tissue had higher CYP2J2 protein levels, which resulted in higher rate of terfenadine hydroxylation, compared to diseased cardiac tissues. In addition, levels of both NADPH-Cytochrome P450 oxidoreductase (POR) and sEH proteins were significantly higher in control versus diseased cardiac tissue. Overall, alterations in protein and activity of enzymes involved in the biosynthesis and degradation of EETs provide a mechanistic understanding for decreased EET levels in diseased tissues.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Humanos , Epóxido Hidrolases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Terfenadina , NADP , Eicosanoides/metabolismo , Ácido Araquidônico/metabolismo , Citocromo P-450 CYP2J2
12.
Bioorg Med Chem Lett ; 76: 129009, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174836

RESUMO

Strategically replacing hydrogen with deuterium at sites of metabolism in small molecule drugs can significantly alter clearance and potentially enhance clinical safety. Bupropion is an antidepressant and smoking cessation medication with the potential to cause seizures. We hypothesized that incorporating deuterium at specific sites in bupropion may greatly reduce epimerization, potentially slow metabolism, and reduce the formation of toxic metabolites, namely hydroxybupropion which has been associated with bupropion's toxicity. Four deuterated analogues were synthesized incorporating deuterium at sites of metabolism and epimerization with the aim of altering the metabolic profile of bupropion. Spectroscopic binding and metabolism studies with bupropion and R-or S-d4 and R-or S-d10 analogs were performed with recombinant CYP2B6, human liver microsomes, and human hepatocytes. Results demonstrate that deuterated bupropion analogues exhibited 20-25% decrease in racemization and displayed a significant decrease in the formation of CYP2B6-mediated R,R - or S,S-hydroxybupropion with recombinant protein and human liver microsomes. In primary human hepatocytes, metabolism of deuterated analogs to R,R - and S,S-hydroxybupropion and threo- and erythro-hydrobupropion was significantly less than R/S-d0 bupropion. Selective deuterium substitution at metabolic soft spots in bupropion has the potential to provide a drug with a simplified pharmacokinetic profile, reduced toxicity and improved tolerability in patients.


Assuntos
Bupropiona , Humanos , Bupropiona/farmacologia , Bupropiona/metabolismo , Citocromo P-450 CYP2B6 , Deutério , Proteínas Recombinantes
13.
EBioMedicine ; 83: 104189, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35930887

RESUMO

BACKGROUND: Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid that may impact atherosclerosis, and animal experimental studies suggest EETs protect cardiac function. Plasma EETs are mostly esterified to phospholipids and part of an active pool. To address the limited information about EETs and CVD in humans, we conducted a prospective study of total plasma EETs (free + esterified) and diabetes-related CVD in the Cardiovascular Health Study (CHS). METHODS: We measured 4 EET species and their metabolites, dihydroxyepoxyeicosatrienoic acids (DHETs), in plasma samples from 892 CHS participants with type 2 diabetes. We determined the association of EETs and DHETs with incident myocardial infarction (MI) and ischemic stroke using Cox regression. FINDINGS: During follow-up (median 7.5 years), we identified 150 MI and 134 ischemic strokes. In primary, multivariable analyses, elevated levels of each EET species were associated with non-significant lower risk of incident MI (for example, hazard ratio for 1 SD higher 14,15-EET: 0.86, 95% CI: 0.72-1.02; p=0.08). The EETs-MI associations became significant in analyses further adjusted for DHETs (hazard ratio for 1 SD higher 14,15-EET adjusted for 14,15-DHET: 0.76, 95% CI: 0.63-0.91; p=0.004). Elevated EET levels were associated with higher risk of ischemic stroke in primary but not secondary analyses. Three DHET species were associated with higher risk of ischemic stroke in all analyses. INTERPRETATION: Findings from this prospective study complement the extensive studies in animal models showing EETs protect cardiac function and provide new information in humans. Replication is needed to confirm the associations. FUNDING: US National Institutes of Health.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , AVC Isquêmico , Animais , Ácidos Araquidônicos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Diabetes Mellitus Tipo 2/complicações , Eicosanoides/análise , Eicosanoides/metabolismo , Humanos , Estudos Prospectivos
14.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163358

RESUMO

Epilepsy is a heterogenous neurological disorder characterized by recurrent unprovoked seizures, mitochondrial stress, and neurodegeneration. Hydrogen sulfide (H2S) is a gasotransmitter that promotes mitochondrial function and biogenesis, elicits neuromodulation and neuroprotection, and may acutely suppress seizures. A major gap in knowledge remains in understanding the role of mitochondrial dysfunction and progressive changes in H2S levels following acute seizures or during epileptogenesis. We thus sought to quantify changes in H2S and its methylated metabolite (MeSH) via LC-MS/MS following acute maximal electroshock and 6 Hz 44 mA seizures in mice, as well as in the early phases of the corneally kindled mouse model of chronic seizures. Plasma H2S was acutely reduced after a maximal electroshock seizure. H2S or MeSH levels and expressions of related genes in whole brain homogenates from corneally kindled mice were not altered. However, plasma H2S levels were significantly lower during kindling, but not after established kindling. Moreover, we demonstrated a time-dependent increase in expression of mitochondrial membrane integrity-related proteins, OPA1, MFN2, Drp1, and Mff during kindling, which did not correlate with changes in gene expression. Taken together, short-term reductions in plasma H2S could be a novel biomarker for seizures. Future studies should further define the role of H2S and mitochondrial stress in epilepsy.


Assuntos
Eletrochoque/efeitos adversos , Epilepsia/metabolismo , Sulfeto de Hidrogênio/sangue , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Epilepsia/etiologia , Regulação da Expressão Gênica , Excitação Neurológica , Masculino , Metilação , Camundongos , Espectrometria de Massas em Tandem , Fatores de Tempo
15.
Drug Metab Dispos ; 50(3): 258-267, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34921097

RESUMO

Over the past decades, the number of scientists trained in departments dedicated to traditional medicinal chemistry, biotransformation and/or chemical toxicology have seemingly declined. Yet, there remains a strong demand for such specialized skills in the pharmaceutical industry, particularly within drug metabolism/pharmacokinetics (DMPK) departments. In this position paper, the members of the Biotransformation, Mechanisms, and Pathways Focus Group (BMPFG) steering committee reflect on the diverse roles and responsibilities of scientists trained in the biotransformation field in pharmaceutical companies and contract research organizations. The BMPFG is affiliated with the International Society for the Study of Xenobiotics (ISSX) and was specifically created to promote the exchange of ideas pertaining to topics of current and future interest involving the metabolism of xenobiotics (including drugs). The authors also delve into the relevant education and diverse training skills required to successfully nurture the future cohort of industry biotransformation scientists and guide them toward a rewarding career path. The ability of scientists with a background in biotransformation and organic chemistry to creatively solve complex drug metabolism problems encountered during research and development efforts on both small and large molecular modalities is exemplified in five relevant case studies. Finally, the authors stress the importance and continued commitment to training the next generation of biotransformation scientists who are not only experienced in the metabolism of conventional small molecule therapeutics, but are also equipped to tackle emerging challenges associated with new drug discovery modalities including peptides, protein degraders, and antibodies. SIGNIFICANCE STATEMENT: Biotransformation and mechanistic drug metabolism scientists are critical to advancing chemical entities through discovery and development, yet the number of scientists academically trained for this role is on the decline. This position paper highlights the continuing demand for biotransformation scientists and the necessity of nurturing creative ways to train them and guarantee the future growth of this field.


Assuntos
Indústria Farmacêutica , Xenobióticos , Biotransformação , Descoberta de Drogas , Humanos , Preparações Farmacêuticas
16.
Methods Mol Biol ; 2342: 481-550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34272705

RESUMO

The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in others. A significant source of this variability in drug response is drug metabolism, where differences in presystemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, Cmax, and/or Cmin) following administration of a fixed dose.Interindividual differences in drug biotransformation have been studied extensively. It is recognized that both intrinsic factors (e.g., genetics, age, sex, and disease states) and extrinsic factors (e.g., diet , chemical exposures from the environment, and the microbiome) play a significant role. For drug-metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, upregulation and downregulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less predictable and time-dependent manner. Understanding the mechanistic basis for variability in drug disposition and response is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that will improve outcomes in maintaining health and treating disease.


Assuntos
Família 4 do Citocromo P450/genética , Preparações Farmacêuticas/metabolismo , Variantes Farmacogenômicos , Biotransformação , Regulação da Expressão Gênica , Humanos , Inativação Metabólica , Medicina de Precisão
17.
EBioMedicine ; 66: 103279, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33752126

RESUMO

BACKGROUND: Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid with multiple biological functions. Rodent experiments suggest EETs play a role in insulin sensitivity and diabetes, but evidence in humans is limited. To address this knowledge gap, we conducted a case-cohort study in the Strong Heart Family Study, a prospective cohort among American Indians. METHODS: We measured 4 EET species and 4 species of corresponding downstream metabolites, dihydroxyeicosatrieonic acids (DHETs), in plasma samples from 1161 participants, including 310 with type 2 diabetes. We estimated the associations of total (esterified and free) EETs and DHETs with incident diabetes risk, adjusting for known risk factors. We also examined cross-sectional associations with plasma fasting insulin and glucose in the case-cohort and in 271 participants without diabetes from the older Strong Heart Study cohort, and meta-analyzed the results from the 2 cohorts. FINDINGS: We observed no significant association of total EET or DHET levels with incident diabetes. In addition, plasma EETs were not associated with plasma insulin or plasma glucose. However, higher plasma 14,15-DHET was associated with lower plasma insulin and lower plasma glucose. INTERPRETATION: In this first prospective study of EETs and diabetes, we found no evidence for a role of total plasma EETs in diabetes. The novel associations of 14,15-DHET with insulin and glucose warrant replication and exploration of possible mechanisms. FUNDING: US National Institutes of Health.


Assuntos
Ácido 8,11,14-Eicosatrienoico/sangue , Biomarcadores/sangue , Glicemia , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Insulina/sangue , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos Transversais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Suscetibilidade a Doenças , Feminino , Glucose/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco , Adulto Jovem
18.
Sci Rep ; 11(1): 4857, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649426

RESUMO

Methylation of alkyl thiols is a biotransformation pathway designed to reduce thiol reactivity and potential toxicity, yet the gene and protein responsible for human alkyl thiol methyltransferase (TMT) activity remain unknown. Here we demonstrate with a range of experimental approaches using cell lines, in vitro systems, and recombinantly expressed enzyme, that human methyltransferase-like protein 7B (METTL7B) catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (AdoMet) to hydrogen sulfide (H2S) and other exogenous thiol small molecules. METTL7B gene modulation experiments, including knockdown in HepG2 cells and overexpression in HeLa cells, directly alter the methylation of the drug captopril, a historic probe substrate for TMT activity. Furthermore, recombinantly expressed and purified wild-type METTL7B methylates several thiol compounds, including H2S, 7α-thiospironolactone, L-penicillamine, and captopril, in a time- and concentration-dependent manner. Typical for AdoMet-dependent small molecule methyltransferases, S-adenosyl-L-homocysteine (AdoHcy) inhibited METTL7B activity in a competitive fashion. Similarly, mutating a conserved aspartate residue, proposed to anchor AdoMet into the active site, to an alanine (D98A) abolished methylation activity. Endogenous thiols such as glutathione and cysteine, or classic substrates for other known small molecule S-, N-, and O-methyltransferases, were not substrates for METTL7B. Our results confirm, for the first time, that METTL7B, a gene implicated in multiple disease states including rheumatoid arthritis and breast cancer, encodes a protein that methylates small molecule alkyl thiols. Identifying the catalytic function of METTL7B will enable future pharmacological research in disease pathophysiology where altered METTL7B expression and, potentially H2S levels, can disrupt cell growth and redox state.


Assuntos
Captopril/química , Proteínas de Transporte/química , Sulfeto de Hidrogênio/química , Metiltransferases/química , Captopril/farmacocinética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células HeLa , Células Hep G2 , Humanos , Sulfeto de Hidrogênio/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo
19.
Life Sci ; 264: 118590, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069736

RESUMO

AIMS: Pregnancy is associated with numerous changes in physiological and metabolic processes to ensure successful progression to full term. One such change is the alteration of arachidonic acid (AA) metabolism and formation of eicosanoids. This study explores the changes in AA metabolites formed through the cytochrome P450 mediated pathway to epoxyeicosatrienoic (EET), dihydroxyeicosatrienoic (DHET), and hydroxyeicosatetraenoic (HETE) acids which have been implicated in blood pressure regulation and inflammatory responses that are important for a healthy pregnancy. MAIN METHODS: The study determines circulating levels of EETs, DHETs and HETEs extracted from erythrocyte membranes and measured by mass spectroscopy during the progression of a normal pregnancy. Blood samples, from 25 women, were collected at three time points including 25-28 weeks gestation, 28-32 weeks gestation, and the non-pregnant control at 3-4 months postpartum. KEY FINDINGS: Results demonstrate that healthy pregnancy is associated with significant increases in 8,9-DHET, 11,12-DHET and 14,15-DHET and a decrease in trans 8,9-EET during 28-32 weeks gestation compared to 3-4 months postpartum. These differences are likely due to several mechanisms including an increase in soluble epoxide hydrolase activity, a decrease in glutathione conjugation, and altered cytochrome P450 enzyme expression and/or activity that occurs during pregnancy. SIGNIFICANCE: Metabolism of AA through the cytochrome P450 pathway generates physiologically important eicosanoids that could play an important role in the progression of a healthy pregnancy. Establishing the changes that occur during normal pregnancy may, in the future, help in early detection of pregnancy complications including preeclampsia.


Assuntos
Membrana Eritrocítica/metabolismo , Ácidos Hidroxieicosatetraenoicos/sangue , Período Pós-Parto/sangue , Segundo Trimestre da Gravidez/sangue , Terceiro Trimestre da Gravidez/sangue , Adulto , Biomarcadores/sangue , Eicosanoides/sangue , Feminino , Humanos , Gravidez
20.
Mol Pharm ; 17(11): 4114-4124, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32955894

RESUMO

The availability of assays that predict the contribution of cytochrome P450 (CYP) metabolism allows for the design of new chemical entities (NCEs) with minimal oxidative metabolism. These NCEs are often substrates of non-CYP drug-metabolizing enzymes (DMEs), such as UDP-glucuronosyltransferases (UGTs), sulfotransferases (SULTs), carboxylesterases (CESs), and aldehyde oxidase (AO). Nearly 30% of clinically approved drugs are metabolized by non-CYP enzymes. However, knowledge about the differential hepatic versus extrahepatic abundance of non-CYP DMEs is limited. In this study, we detected and quantified the protein abundance of eighteen non-CYP DMEs (AO, CES1 and 2, ten UGTs, and five SULTs) across five different human tissues. AO was most abundantly expressed in the liver and to a lesser extent in the kidney; however, it was not detected in the intestine, heart, or lung. CESs were ubiquitously expressed with CES1 being predominant in the liver, while CES2 was enriched in the small intestine. Consistent with the literature, UGT1A4, UGT2B4, and UGT2B15 demonstrated liver-specific expression, whereas UGT1A10 expression was specific to the intestine. UGT1A1 and UGT1A3 were expressed in both the liver and intestine; UGT1A9 was expressed in the liver and kidney; and UGT2B17 levels were significantly higher in the intestine than in the liver. All five SULTs were detected in the liver and intestine, and SULT1A1 and 1A3 were detected in the lung. Kidney abundance was the most variable among the studied tissues, and overall, high interindividual variability (>15-fold) was observed for UGT2B17, CES2 (intestine), SULT1A1 (liver), UGT1A9, UGT2B7, and CES1 (kidney). These differential tissue abundance data can be integrated into physiologically based pharmacokinetic (PBPK) models for the prediction of non-CYP drug metabolism and toxicity in hepatic and extrahepatic tissues.


Assuntos
Aldeído Oxidase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Glucuronosiltransferase/metabolismo , Intestino Delgado/enzimologia , Rim/enzimologia , Fígado/enzimologia , Pulmão/enzimologia , Miocárdio/enzimologia , Sulfotransferases/metabolismo , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doadores de Tecidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...