Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 91(1): 013701, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32012628

RESUMO

Electrospray deposition (ESD) enables the growth of solution deposited thin films in a precise and continuous manner by the delivery of submicron droplets of dilute solutions to a heated substrate. By combining ESD with programmable motor control and gradient solution pumping in a first-of-its-kind user tool at the Center for Functional Nanomaterials at Brookhaven National Laboratory, we show the ability to create one or two dimensional compositional gradient nanoscale films via ESD. These capabilities make it possible to construct thin film multicomponent "libraries" on a single substrate to rapidly and systematically characterize composition-dependent properties in a variety of material systems such as thin films involving homopolymer and block copolymer blends. We report the design, construction, and validation of a gradient ESD tool that allows users to carefully control the jet stability, flow composition, spray position, and substrate temperature. Calibrated thin films range in thickness from tens to hundreds of nanometers. We demonstrate gradient thin films using a ternary dye triangle as well as a gradual blending of polystyrene homopolymer with poly(styrene-block-methyl methacrylate) on a single substrate. Paired with the rapid measurement capabilities of synchrotron small angle X-ray scattering, this tool forms an integral part of a new platform for high-throughput, autonomous characterization and design of nanomaterial thin films and soft materials more generally.

2.
RSC Adv ; 10(69): 42529-42541, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516747

RESUMO

Multicomponent blending is a convenient yet powerful approach to rationally control the material structure, morphology, and functional properties in solution-deposited films of block copolymers and other self-assembling nanomaterials. However, progress in understanding the structural and morphological dependencies on blend composition is hampered by the time and labor required to synthesize and characterize a large number of discrete samples. Here, we report a new method to systematically explore a wide composition space in ternary blends. Specifically, the blend composition space is divided into gradient segments deposited sequentially on a single wafer by a new gradient electrospray deposition tool, and characterized using high-throughput grazing-incidence small-angle X-ray scattering. This method is applied to the creation of a ternary morphology diagram for a cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymer blended with PS and PMMA homopolymers. Using "wet brush" homopolymers of very low molecular weight (∼1 kg mol-1), we identify well-demarcated composition regions comprising highly ordered cylinder, lamellae, and sphere morphologies, as well as a disordered phase at high homopolymer mass fractions. The exquisite granularity afforded by this approach also helps to uncover systematic dependencies among self-assembled morphology, topological grain size, and domain period as functions of homopolymer mass fraction and PS : PMMA ratio. These results highlight the significant advantages afforded by blending low molecular weight homopolymers for block copolymer self-assembly. Meanwhile, the high-throughput, combinatorial approach to investigating nanomaterial blends introduced here dramatically reduces the time required to explore complex process parameter spaces and is a natural complement to recent advances in autonomous X-ray characterization.

3.
Nat Mater ; 18(11): 1235-1243, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31209387

RESUMO

Creating well-defined single-crystal textures in materials requires the biaxial alignment of all grains into desired orientations, which is challenging to achieve in soft materials. Here we report the formation of single crystals with rigorously controlled texture over macroscopic areas (>1 cm2) in a soft mesophase of a columnar discotic liquid crystal. We use two modes of directed self-assembly, physical confinement and magnetic fields, to achieve control of the orientations of the columnar axes and the hexagonal lattice along orthogonal directions. Field control of the lattice orientation emerges in a low-temperature phase of tilted discogens that breaks the field degeneracy around the columnar axis present in non-tilted states. Conversely, column orientation is controlled by physical confinement and the resulting imposition of homeotropic anchoring at bounding surfaces. These results extend our understanding of molecular organization in tilted systems and may enable the development of a range of new materials for distinct applications.

4.
Nanoscale ; 8(1): 149-56, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26611402

RESUMO

We present a facile method for the synthesis of nanorod arrays over large areas with fine control over the average rod-rod spacing. Block copolymer micelles are used to template solvothermal synthesis of ZnO nanorods by preferentially enabling reactant diffusion through the micelle cores to an underlying seed layer. The distance between nanorod centers is defined by the micelle number density which is in turn controlled by the molecular weight of the block copolymer, and the block copolymer concentration in a templating film. We demonstrate the ability to control the resulting nanorod number density from ∼100 µm(-2) down to ∼10 µm(-2) with high fidelity. Correspondingly, the distance between nanorod surfaces was varied from ∼60 nm to 230 nm. The method developed here provides a viable approach for rapidly fabricating large-area nanostructured electrodes comprised of nanorod arrays with controlled geometries. The ability to tailor nanorod spacing over a broad range suggests applications in photovoltaics and sensors based on optical resonances can be readily addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...