Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 17(3): 536-544, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35234444

RESUMO

Selective targeting of TNF in inflammatory diseases such as rheumatoid arthritis (RA) has provided great therapeutic benefit to many patients with chronic RA. Although these therapies show initially high response rates, their therapeutic benefit is limited over the lifetime of the patient due to the development of antidrug antibodies that preclude proper therapeutic benefits. As a result, patients often return to more problematic therapies such as methotrexate or hydroxychloroquine, which carry long-term side effects. Thus, there is an unmet medical need to develop alternative treatments enabling patients to regain the benefits of selectively targeting TNF functions in vivo. The protein kinase TAK1 is a critical signaling node in TNF-mediated intracellular signaling, regulating downstream NF-κß activation, leading to the transcription of inflammatory cytokines. TAK1 inhibitors have been developed but have been limited in their clinical advancement due to the lack of selectivity within the human kinome and, most importantly, lack of oral bioavailability. Using a directed medicinal chemistry approach, driven by the cocrystal structure of the TAK1 inhibitor takinib, we developed HS-276, a potent (Ki = 2.5 nM) and highly selective orally bioavailable TAK1 inhibitor. Following oral administration in normal mice, HS-276 is well tolerated (MTD >100 mg/Kg), displaying >95% bioavailability with µM plasma levels. The in vitro and in vivo efficacy of HS-276 showed significant inhibition of TNF-mediated cytokine profiles, correlating with significant attenuation of arthritic-like symptoms in the CIA mouse model of inflammatory RA. Our studies reinforce the hypothesis that TAK1 can be safely targeted pharmacologically to provide an effective alternative to frontline biologic-based RA therapeutics.


Assuntos
Artrite Reumatoide , MAP Quinase Quinase Quinases , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Transdução de Sinais
2.
Open Biol ; 10(9): 200099, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32873150

RESUMO

Aberrant tumour necrosis factor (TNF) signalling is a hallmark of many inflammatory diseases including rheumatoid arthritis (RA), irritable bowel disease and lupus. Maladaptive TNF signalling can lead to hyper active downstream nuclear factor (NF)-κß signalling in turn amplifying a cell's inflammatory response and exacerbating disease. Within the TNF intracellular inflammatory signalling cascade, transforming growth factor-ß-activated kinase 1 (TAK1) has been shown to play a critical role in mediating signal transduction and downstream NF-κß activation. Owing to its role in TNF inflammatory signalling, TAK1 has become a potential therapeutic target for the treatment of inflammatory diseases such as RA. This review highlights the current development of targeting the TNF-TAK1 signalling axis as a novel therapeutic strategy for the treatment of inflammatory diseases.


Assuntos
Inflamação/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos/métodos , Humanos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Mediadores da Inflamação/metabolismo , MAP Quinase Quinase Quinases/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Inibidores do Fator de Necrose Tumoral/química , Inibidores do Fator de Necrose Tumoral/farmacologia , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/química
3.
Arthritis Res Ther ; 21(1): 292, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31847895

RESUMO

OBJECTIVES: To examine the ability of takinib, a selective transforming growth factor beta-activated kinase 1 (TAK1) inhibitor, to reduce the severity of murine type II collagen-induced arthritis (CIA), and to affect function of synovial cells. METHODS: Following the induction of CIA, mice were treated daily with takinib (50 mg/kg) and clinical scores assessed. Thirty-six days post-CIA induction, histology was performed on various joints of treated and vehicle-treated animals. Inflammation, pannus, cartilage damage, bone resorption, and periosteal bone formation were quantified. Furthermore, pharmacokinetics of takinib were evaluated by LC-MS in various tissues. Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) cells were cultured with 10 µM takinib and cytokine secretion analyzed by cytokine/chemokine proteome array. Cytotoxicity of takinib for RA-FLS was measured with 24 to 48 h cultures in the presence or absence of tumor necrosis factor (TNF). RESULTS: Here, we show takinib's ability to reduce the clinical score in the CIA mouse model of rheumatoid arthritis (RA) (p < 0.001). TAK1 inhibition reduced inflammation (p < 0.01), cartilage damage (p < 0.01), pannus, bone resorption, and periosteal bone formation and periosteal bone width in all joints of treated mice compared to vehicle treated. Significant reduction of inflammation (p < 0.004) and cartilage damage (p < 0.004) were observed in the knees of diseased treated animals, with moderate reduction seen in the forepaws and hind paws. Furthermore, the pharmacokinetics of takinib show rapid plasma clearance (t½ = 21 min). In stimulated RA-FLS cells, takinib reduced GROα, G-CSF, and ICAM-1 pro-inflammatory cytokine signaling. CONCLUSION: Our findings support the hypothesis that TAK1 targeted therapy represents a novel therapeutic axis to treat RA and other inflammatory diseases.


Assuntos
Artrite Experimental/prevenção & controle , Benzamidas/farmacologia , Benzimidazóis/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Sinoviócitos/efeitos dos fármacos , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/prevenção & controle , Benzamidas/farmacocinética , Benzimidazóis/farmacocinética , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos DBA , Inibidores de Proteínas Quinases/farmacologia , Índice de Gravidade de Doença , Sinoviócitos/metabolismo
4.
Sci Rep ; 8(1): 17058, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451876

RESUMO

Immune challenge of invading macrophages at sites of infection is associated with release of TNF, which triggers a local cytokine storm as part of the normal inflammatory response. Whereas this response maybe beneficial in fighting off infections, similar responses triggered in autoimmune diseases contribute significantly to the underlying damaging pathology associated with these diseases. Here we show that Takinib, a highly discriminatory inhibitor of transforming growth factor Beta- activated kinase 1 (TAK1), selectively and potently reduces TNF production in pro-inflammatory THP-1 macrophages. A complete survey of 110 cytokines, showed robust loss of proinflammatory cytokine responsiveness to lipopolysaccharide (LPS) and interferon gamma (IFNγ) challenge in response to Takinib. The mechanisms of action of Takinib was recapitulated in TAK1 KO macrophages. TAK1 KO cells showed significant loss of TNF production as well as release of IL-6 in response to LPS challenge. Furthermore, Takinib blocked the ability of exogenously added LPS to promote phosphorylation of, c-Jun, p38 protein kinases as well as downstream transcription factors regulated by nuclear factor κ-light-chain-enhancer of activated B cells (NFκB). In a mouse LPS challenge model, Takinib significantly reduced TNF serum levels. Our findings demonstrate that Takinib has utility in the treatment inflammatory disease by locally suppressing TNF production from invading macrophages.


Assuntos
MAP Quinase Quinase Quinases/genética , Macrófagos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Animais , Feminino , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Cell Chem Biol ; 24(8): 1029-1039.e7, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28820959

RESUMO

Tumor necrosis factor alpha (TNF-α) has both positive and negative roles in human disease. In certain cancers, TNF-α is infused locally to promote tumor regression, but dose-limiting inflammatory effects limit broader utility. In autoimmune disease, anti-TNF-α antibodies control inflammation in most patients, but these benefits are offset during chronic treatment. TAK1 acts as a key mediator between survival and cell death in TNF-α-mediated signaling. Here, we describe Takinib, a potent and selective TAK1 inhibitor that induces apoptosis following TNF-α stimulation in cell models of rheumatoid arthritis and metastatic breast cancer. We demonstrate that Takinib is an inhibitor of autophosphorylated and non-phosphorylated TAK1 that binds within the ATP-binding pocket and inhibits by slowing down the rate-limiting step of TAK1 activation. Overall, Takinib is an attractive starting point for the development of inhibitors that sensitize cells to TNF-α-induced cell death, with general implications for cancer and autoimmune disease treatment.


Assuntos
Benzamidas/química , Benzimidazóis/química , MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Fator de Necrose Tumoral alfa/metabolismo , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Benzamidas/metabolismo , Benzamidas/farmacologia , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Sítios de Ligação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Interleucina-6/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Sinoviócitos/citologia , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores
6.
ACS Chem Biol ; 12(4): 1047-1055, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28103010

RESUMO

Extracellular expression of heat shock protein 90 (eHsp90) by tumor cells is correlated with malignancy. Development of small molecule probes that can detect eHsp90 in vivo may therefore have utility in the early detection of malignancy. We synthesized a cell impermeable far-red fluorophore-tagged Hsp90 inhibitor to target eHsp90 in vivo. High resolution confocal and lattice light sheet microscopy show that probe-bound eHsp90 accumulates in punctate structures on the plasma membrane of breast tumor cells and is actively internalized. The extent of internalization correlates with tumor cell aggressiveness, and this process can be induced in benign cells by overexpressing p110HER2. Whole body cryoslicing, imaging, and histology of flank and spontaneous tumor-bearing mice strongly suggests that eHsp90 expression and internalization is a phenomenon unique to tumor cells in vivo and may provide an "Achilles heel" for the early diagnosis of metastatic disease and targeted drug delivery.


Assuntos
Neoplasias da Mama/patologia , Corantes Fluorescentes/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Endocitose , Espaço Extracelular/metabolismo , Genes erbB-2 , Xenoenxertos , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...