Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Antimicrob Agents Chemother ; 53(9): 3952-62, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19506055

RESUMO

We describe the design and characterization of a potent human respiratory syncytial virus (RSV) nucleocapsid gene-specific small interfering RNA (siRNA), ALN-RSV01. In in vitro RSV plaque assays, ALN-RSV01 showed a 50% inhibitory concentration of 0.7 nM. Sequence analysis of primary isolates of RSV showed that the siRNA target site was absolutely conserved in 89/95 isolates, and ALN-RSV01 demonstrated activity against all isolates, including those with single-mismatch mutations. In vivo, intranasal dosing of ALN-RSV01 in a BALB/c mouse model resulted in potent antiviral efficacy, with 2.5- to 3.0-log-unit reductions in RSV lung concentrations being achieved when ALN-RSV01 was administered prophylactically or therapeutically in both single-dose and multidose regimens. The specificity of ALN-RSV01 was demonstrated in vivo by using mismatch controls; and the absence of an immune stimulatory mechanism was demonstrated by showing that nonspecific siRNAs that induce alpha interferon and tumor necrosis factor alpha lack antiviral efficacy, while a chemically modified form of ALN-RSV01 lacking measurable immunostimulatory capacity retained full activity in vivo. Furthermore, an RNA interference mechanism of action was demonstrated by the capture of the site-specific cleavage product of the RSV mRNA via rapid amplification of cDNA ends both in vitro and in vivo. These studies lay a solid foundation for the further investigation of ALN-RSV01 as a novel therapeutic antiviral agent for clinical use by humans.


Assuntos
Antivirais/farmacologia , Nucleocapsídeo/genética , Interferência de RNA/fisiologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/genética , Animais , Chlorocebus aethiops , Cricetinae , Feminino , Genótipo , Humanos , Interferon-alfa/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Camundongos , Filogenia , RNA Interferente Pequeno/metabolismo , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sincicial Respiratório Humano/classificação , Fator de Necrose Tumoral alfa/metabolismo
3.
Mol Neurodegener ; 3: 19, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18976489

RESUMO

BACKGROUND: Overexpression of alpha-synuclein (SNCA) in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA contributes to risk of idiopathic Parkinson's disease (PD), possibly as a result of overexpression. SNCA downregulation is therefore a valid therapeutic target for PD. RESULTS: We have identified human and murine-specific siRNA molecules which reduce SNCA in vitro. As a proof of concept, we demonstrate that direct infusion of chemically modified (naked), murine-specific siRNA into the hippocampus significantly reduces SNCA levels. Reduction of SNCA in the hippocampus and cortex persists for a minimum of 1 week post-infusion with recovery nearing control levels by 3 weeks post-infusion. CONCLUSION: We have developed naked gene-specific siRNAs that silence expression of SNCA in vivo. This approach may prove beneficial toward our understanding of the endogenous functional equilibrium of SNCA, its role in disease, and eventually as a therapeutic strategy for alpha-synucleinopathies resulting from SNCA overexpression.

4.
Nat Biotechnol ; 26(5): 561-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18438401

RESUMO

The safe and effective delivery of RNA interference (RNAi) therapeutics remains an important challenge for clinical development. The diversity of current delivery materials remains limited, in part because of their slow, multi-step syntheses. Here we describe a new class of lipid-like delivery molecules, termed lipidoids, as delivery agents for RNAi therapeutics. Chemical methods were developed to allow the rapid synthesis of a large library of over 1,200 structurally diverse lipidoids. From this library, we identified lipidoids that facilitate high levels of specific silencing of endogenous gene transcripts when formulated with either double-stranded small interfering RNA (siRNA) or single-stranded antisense 2'-O-methyl (2'-OMe) oligoribonucleotides targeting microRNA (miRNA). The safety and efficacy of lipidoids were evaluated in three animal models: mice, rats and nonhuman primates. The studies reported here suggest that these materials may have broad utility for both local and systemic delivery of RNA therapeutics.


Assuntos
Técnicas de Química Combinatória/métodos , Portadores de Fármacos/química , Desenho de Fármacos , Lipídeos/química , Interferência de RNA , RNA/administração & dosagem , RNA/genética
5.
ACS Chem Biol ; 1(3): 176-83, 2006 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-17163665

RESUMO

Recently, chemically synthesized short interfering RNA (siRNA) duplexes have been used with success for gene silencing. Chemical modification is desired for therapeutic applications to improve biostability and pharmacokinetic properties; chemical modification may also provide insight into the mechanism of silencing. siRNA duplexes containing the 2,4-difluorotoluyl ribonucleoside (rF) were synthesized to evaluate the effect of noncanonical nucleoside mimetics on RNA interference. 5'-Modification of the guide strand with rF did not alter silencing relative to unmodified control. Internal uridine to rF substitutions were well-tolerated. Thermal melting analysis showed that the base pair between rF and adenosine (A) was destabilizing relative to a uridine-adenosine pair, although it was slightly less destabilizing than other mismatches. The crystal structure of a duplex containing rFoA pairs showed local structural variations relative to a canonical RNA helix. As the fluorine atoms cannot act as hydrogen bond acceptors and are more hydrophobic than uridine, there was an absence of a well-ordered water structure around the rF residues in both grooves. siRNAs with the rF modification effectively silenced gene expression and offered improved nuclease resistance in serum; therefore, evaluation of this modification in therapeutic siRNAs is warranted.


Assuntos
Inativação Gênica , RNA Interferente Pequeno/genética , Ribonucleotídeos/farmacologia , Pareamento de Bases , Sequência de Bases , Estabilidade de Medicamentos , Inativação Gênica/efeitos dos fármacos , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Interferente Pequeno/química
6.
Nature ; 441(7089): 111-4, 2006 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-16565705

RESUMO

The opportunity to harness the RNA interference (RNAi) pathway to silence disease-causing genes holds great promise for the development of therapeutics directed against targets that are otherwise not addressable with current medicines. Although there are numerous examples of in vivo silencing of target genes after local delivery of small interfering RNAs (siRNAs), there remain only a few reports of RNAi-mediated silencing in response to systemic delivery of siRNA, and there are no reports of systemic efficacy in non-rodent species. Here we show that siRNAs, when delivered systemically in a liposomal formulation, can silence the disease target apolipoprotein B (ApoB) in non-human primates. APOB-specific siRNAs were encapsulated in stable nucleic acid lipid particles (SNALP) and administered by intravenous injection to cynomolgus monkeys at doses of 1 or 2.5 mg kg(-1). A single siRNA injection resulted in dose-dependent silencing of APOB messenger RNA expression in the liver 48 h after administration, with maximal silencing of >90%. This silencing effect occurred as a result of APOB mRNA cleavage at precisely the site predicted for the RNAi mechanism. Significant reductions in ApoB protein, serum cholesterol and low-density lipoprotein levels were observed as early as 24 h after treatment and lasted for 11 days at the highest siRNA dose, thus demonstrating an immediate, potent and lasting biological effect of siRNA treatment. Our findings show clinically relevant RNAi-mediated gene silencing in non-human primates, supporting RNAi therapeutics as a potential new class of drugs.


Assuntos
Primatas/genética , Interferência de RNA/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Animais , Apolipoproteínas B/deficiência , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
7.
Nature ; 432(7014): 173-8, 2004 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-15538359

RESUMO

RNA interference (RNAi) holds considerable promise as a therapeutic approach to silence disease-causing genes, particularly those that encode so-called 'non-druggable' targets that are not amenable to conventional therapeutics such as small molecules, proteins, or monoclonal antibodies. The main obstacle to achieving in vivo gene silencing by RNAi technologies is delivery. Here we show that chemically modified short interfering RNAs (siRNAs) can silence an endogenous gene encoding apolipoprotein B (apoB) after intravenous injection in mice. Administration of chemically modified siRNAs resulted in silencing of the apoB messenger RNA in liver and jejunum, decreased plasma levels of apoB protein, and reduced total cholesterol. We also show that these siRNAs can silence human apoB in a transgenic mouse model. In our in vivo study, the mechanism of action for the siRNAs was proven to occur through RNAi-mediated mRNA degradation, and we determined that cleavage of the apoB mRNA occurred specifically at the predicted site. These findings demonstrate the therapeutic potential of siRNAs for the treatment of disease.


Assuntos
Apolipoproteínas B/deficiência , Apolipoproteínas B/genética , Terapia Genética/métodos , Interferência de RNA/efeitos dos fármacos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologia , Animais , Apolipoproteína B-100 , Apolipoproteínas B/sangue , Colesterol/sangue , Modelos Animais de Doenças , Humanos , Injeções Intravenosas , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Sensibilidade e Especificidade
8.
Arch Pediatr Adolesc Med ; 156(11): 1081-5, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12413333

RESUMO

BACKGROUND: Marfan syndrome is an autosomal dominant disorder of connective tissue caused by mutations in the fibrillin 1 gene (FBN1). FBN1 mutations have been associated with a broad spectrum of phenotypes. Neonatal Marfan syndrome has unique clinical manifestations and mutations. OBJECTIVE: To determine if there is a discernible genotypic-phenotypic correlation associated with the unique mutation in neonatal Marfan syndrome. STUDY DESIGN: A newborn exhibited many typical characteristics of neonatal Marfan syndrome, including arachnodactyly; contractures of both elbows, knees, and ankles; small-joint laxity; dilated cardiomyopathy; valvular dysplasia and insufficiency; congestive heart failure; and pulmonary emphysema. Three atypical features were also discovered: a right diaphragmatic hernia, a myocardial mass, and left main-stem bronchomalacia. She died at 3(1/2) months of age. Total RNA was extracted from skin fibroblasts and amplified by means of reverse transcriptase polymerase chain reaction amplification with FBN1-specific primers. The complementary DNA fragments were sequenced. RESULTS: A single T-to-C transition at nucleotide 3276 (T3276C) was identified and confirmed at the DNA level by sequencing of genomic DNA. This results in a substitution of threonine for isoleucine. CONCLUSIONS: Neonatal Marfan syndrome is a unique clinical entity with recurring mutation hot spots in exons 24 to 27 and 31 to 32 of the FBN1 gene. Some clinical features in this case report are unusual for neonatal Marfan syndrome. This is the third report of this T3276C mutation in the FBN1 gene with unusual clinical manifestations. We conclude that there is a genotypic-phenotypic correlation associated with this mutation.


Assuntos
Anormalidades Múltiplas/genética , Síndrome de Marfan/genética , Proteínas dos Microfilamentos/genética , Mutação Puntual , Feminino , Fibrilina-1 , Fibrilinas , Genótipo , Humanos , Recém-Nascido , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...