Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 90(2): 655-663, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36971340

RESUMO

PURPOSE: Ischemic injury in the kidney is a common pathophysiological event associated with both acute kidney injury and chronic kidney disease; however, regional ischemia-reperfusion as seen in thromboembolic renal disease is often undetectable and thus subclinical. Here, we assessed the metabolic alterations following subclinical focal ischemia-reperfusion injury with hyperpolarized [1-13 C]pyruvate MRI in a porcine model. METHODS: Five pigs were subjected to 60 min of focal kidney ischemia. After 90 min of reperfusion, a multiparametric proton MRI protocol was performed on a clinical 3T scanner system. Metabolism was evaluated using 13 C MRI following infusion of hyperpolarized [1-13 C]pyruvate. Ratios of pyruvate to its detectable metabolites (lactate, bicarbonate, and alanine) were used to quantify metabolism. RESULTS: The focal ischemia-reperfusion injury resulted in injured areas with a mean size of 0.971 cm3 (±1.019). Compared with the contralateral kidney, the injured areas demonstrated restricted diffusion (1269 ± 83.59 × 10-6 mm2 /s vs. 1530 ± 52.73 × 10-6 mm2 /s; p = 0.006) and decreased perfusion (158.8 ± 29.4 mL/100 mL/min vs. 274 ± 63.1 mL/100 mL/min; p = 0.014). In the metabolic assessment, the injured areas displayed increased lactate/pyruvate ratios compared with the entire ipsilateral and the contralateral kidney (0.35 ± 0.13 vs. 0.27 ± 0.1 vs. 0.25 ± 0.1; p = 0.0086). Alanine/pyruvate ratio was unaltered, and we were unable to quantify bicarbonate due to low signal. CONCLUSION: MRI with hyperpolarized [1-13 C]pyruvate in a clinical setup is capable of detecting the acute, subtle, focal metabolic changes following ischemia. This may prove to be a valuable future addition to the renal MRI suite.


Assuntos
Ácido Pirúvico , Traumatismo por Reperfusão , Animais , Suínos , Ácido Pirúvico/metabolismo , Bicarbonatos/metabolismo , Rim/diagnóstico por imagem , Rim/metabolismo , Imageamento por Ressonância Magnética/métodos , Traumatismo por Reperfusão/diagnóstico por imagem , Ácido Láctico/metabolismo , Alanina/metabolismo
2.
Magn Reson Med ; 87(1): 57-69, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34378800

RESUMO

PURPOSE: Hyperpolarized [1-13 C]pyruvate MRS can measure cardiac metabolism in vivo. We investigated whether [1-13 C]pyruvate MRS could predict left ventricular remodeling following myocardial infarction (MI), long-term left ventricular effects of heart failure medication, and could identify responders to treatment. METHODS: Thirty-five rats were scanned with hyperpolarized [1-13 C]pyruvate MRS 3 days after MI or sham surgery. The animals were re-examined after 30 days of therapy with ß-blockers and ACE-inhibitors (active group, n = 12), placebo treatment (placebo group, n = 13) or no treatment (sham group, n = 10). Furthermore, heart tissue mitochondrial respiratory capacity was assessed by high-resolution respirometry. Metabolic results were compared between groups, over time and correlated to functional MR data at each time point. RESULTS: At 30 ± 0.5 days post MI, left ventricular ejection fraction (LVEF) differed between groups (sham, 77% ± 1%; placebo, 52% ± 3%; active, 63% ± 2%, P < .001). Cardiac metabolism, measured by both hyperpolarized [1-13 C]pyruvate MRS and respirometry, neither differed between groups nor between baseline and follow-up. Three days post MI, low bicarbonate + CO2 /pyruvate ratio was associated with low LVEF. At follow-up, in the active group, a poor recovery of LVEF was associated with high bicarbonate + CO2 /pyruvate ratio, as measured by hyperpolarized MRS. CONCLUSION: In a rat model of moderate heart failure, medical treatment improved function, but did not on average influence [1-13 C]pyruvate flux as measured by MRS; however, responders to heart failure medication had reduced capacity for carbohydrate metabolism.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/tratamento farmacológico , Espectroscopia de Ressonância Magnética , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/tratamento farmacológico , Miocárdio , Ácido Pirúvico , Ratos , Volume Sistólico , Função Ventricular Esquerda
3.
Exp Physiol ; 106(12): 2412-2422, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34705304

RESUMO

NEW FINDINGS: What is the central question of this study? Is it possible to combine the hyperpolarized magnetic resonance technique and the hyperinsulinaemic clamp method in order to evaluate skeletal muscle metabolism in a large animal model? What is the main finding and its importance? The logistical set-up is possible, and we found substantial increments in glucose infusion rates representing skeletal muscle glucose uptake but no differences in ratios of [1-13 C]lactate to [1-13 C]pyruvate, [1-13 C]alanine to [1-13 C]pyruvate, and 13 C-bicarbonate to [1-13 C]pyruvate, implying that the hyperpolarization technique might not be optimal for detecting effects of insulin in skeletal muscle of anaesthetized animals, which is of significance for future studies. ABSTRACT: In skeletal muscle, glucose metabolism is tightly regulated by the reciprocal relationship between insulin and adrenaline, with pyruvate being at the intersection of both pathways. Hyperpolarized magnetic resonance (hMR) is a new approach to gain insights into these pathways, and human trials involving hMR and skeletal muscle metabolism are imminent. We aimed to combine the hyperinsulinaemic clamp technique and hMR in a large animal model resembling human physiology. Fifteen anaesthetized pigs were randomized to saline (control group), hyperinsulinaemic euglycaemic clamp technique (HE group) or hyperinsulinaemic hypoglycaemic clamp technique (HH group). Skeletal muscle metabolism was evaluated by hyperpolarized [1-13 C]pyruvate injection and hMR at baseline and after intervention. The glucose infusion rate per kilogram increased by a statistically significant amount in the HE and HH groups (P < 0.001). Hyperpolarized magnetic resonance showed no statistically significant changes in metabolite ratios: [1-13 C]lactate to [1-13 C]pyruvate in the HH group versus control group (P = 0.19); and 13 C-bicarbonate to [1-13 C]pyruvate ratio in the HE group versus the control group (P = 0.12). We found evidence of profound increments in glucose infusion rates representing skeletal muscle glucose uptake, but interestingly, no signs of significant changes in aerobic and anaerobic metabolism using hMR. These results imply that hyperpolarized [1-13 C]pyruvate might not be optimally suited to detect effects of insulin in anaesthetized resting skeletal muscle, which is of significance for future studies.


Assuntos
Hipoglicemiantes , Ácido Pirúvico , Animais , Técnica Clamp de Glucose , Hipoglicemiantes/metabolismo , Insulina/metabolismo , Modelos Animais , Músculo Esquelético/metabolismo , Ácido Pirúvico/metabolismo , Suínos
4.
NMR Biomed ; 33(10): e4371, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32691467

RESUMO

Renal ischemia-reperfusion injury (IRI) is one of the most common types of acute kidney injury. Spironolactone has shown promising kidney protective effects in renal IRI in rats. We investigated the hemodynamic and metabolic effects of spironolactone (100 mg/kg) administered immediately after 40 min unilateral kidney ischemia in rats. Hyperpolarized MRI using co-polarized [1-13 C]pyruvate and [13 C,15 N2 ]urea as well as 1 H dynamic contrast-enhanced (DCE) MRI was performed 24 h after induction of ischemia. We found a significant decrease in renal blood flow (RBF) in the ischemic kidney compared with the contralateral one measured using DCE and [13 C,15 N2 ]urea. The RBF measured using [1-13 C]pyruvate and [13 C,15 N2 ]urea was significantly altered by spironolactone. The RBFs in the ischemic kidney compared with the contralateral kidney were decreased similarly as measured using both [13 C,15 N2 ]urea and [1-13 C]pyruvate in the spironolactone-treated group. Spironolactone treatment increased the perfusion-corrected pyruvate metabolism by 54% in both the ischemic and contralateral kidney. Furthermore, we showed a correlation between vascular permeability using a histological Evans blue analysis and the ratio of the volumes of distribution (VoDs), ie VoD-[13 C,15 N2 ]urea/VoD-[1-13 C]pyruvate. This suggests that [13 C,15 N2 ]urea/[1-13 C]pyruvate VoD ratio may be a novel indicator of renal vascular permeability associated with renal damage in rodents.


Assuntos
Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/tratamento farmacológico , Hemodinâmica , Imageamento por Ressonância Magnética , Espironolactona/uso terapêutico , Injúria Renal Aguda/fisiopatologia , Análise de Variância , Animais , Permeabilidade Capilar/efeitos dos fármacos , Masculino , Perfusão , Ratos Wistar , Espironolactona/farmacologia , Fatores de Tempo
5.
Scand Cardiovasc J ; 54(5): 294-299, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32292074

RESUMO

Background. Liraglutide, a glucagon-like peptide-1 agonist, is used for treatment of type 2 diabetes and has beneficial cardiovascular properties. However, treatment increases heart rate (HR) and possibly the risk of cardiovascular events in chronic heart failure (CHF) patients. We investigated potential associations between HR changes and clinical, laboratory and echocardiographic parameters and clinical events in liraglutide treated CHF patients. Methods. This was a sub-study of the LIVE study. CHF patients (N = 241) with a left ventricular ejection fraction ≤45% were randomised to 1.8 mg liraglutide daily or placebo for 24 weeks. Electrocardiograms (N = 117) and readouts from cardiac implanted electronic devices (N = 20) were analysed for HR and arrhythmias. Results. In patients with sinus rhythm (SR), liraglutide increased HR by 8 ± 9 bpm (pulse measurements), 9 ± 9 bpm (ECG measurements) and 9 ± 6 bpm (device readouts) versus placebo (all p<.005). Increases in HR correlated with liraglutide dose (p=.01). HR remained unchanged in patients without SR. Serious cardiac adverse events were not associated with HR changes. Conclusions. During 6 months of treatment, HR increased substantially in CHF patients with SR treated with liraglutide but was not associated with adverse events. The long-term clinical significance of increased HR in liraglutide treated CHF patients needs to be determined.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Frequência Cardíaca/efeitos dos fármacos , Incretinas/uso terapêutico , Liraglutida/uso terapêutico , Idoso , Doença Crônica , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Humanos , Incretinas/efeitos adversos , Liraglutida/efeitos adversos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Resultado do Tratamento
6.
Sci Rep ; 9(1): 11296, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383914

RESUMO

Myocardial deformation assessed by speckle tracking echocardiography (STE) is increasingly used for diagnosis, monitoring and prognosis in patients with clinical and pre-clinical cardiovascular diseases. Feature tracking cardiac magnetic resonance (FT-CMR) also allows myocardial deformation analysis. To clarify whether the two modalities can be used interchangeably, we compared myocardial deformation analysis by FT-CMR with STE in patients with a variety of cardiovascular diseases and healthy subjects. We included 40 patients and 10 healthy subjects undergoing cardiac magnetic resonance and echocardiographic examination for left ventricular volumetric assessment. We studied patients with heart failure and reduced ejection fraction (n = 10), acute perimyocarditis (n = 10), aortic valve stenosis (n = 10), and previous heart transplantation (n = 10) by global longitudinal (GLS), radial (GRS) and circumferential strain (GCS). Myocardial deformation analysis by FT-CMR was feasible in all but one participant. While GLS, GRS and GCS measured by FT-CMR correlated overall with STE (r = 0.74 and p < 0.001, r = 0.58 and p < 0.001, and r = 0.76 and p < 0.001), the correlations were not consistent within subgroups. GLS was systematically lower, whereas GRS and GCS were higher by FT-CMR compared to STE (p = 0.04 and p < 0.0001). Inter- and intra-observer reproducibility were comparable for FT-CMR and STE overall and across subgroups. In conclusion, myocardial deformation can be evaluated using FT-CMR applied to routine cine-CMR images in patients with a variety of cardiovascular diseases. However, correlation between FT-CMR and STE was modest and agreement was not optimal due to systematic bias regarding GLS and GCS. Consequently, FT-CMR and STE should not be used interchangeably for myocardial strain evaluation.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Coração/diagnóstico por imagem , Miocárdio/patologia , Idoso , Doenças Cardiovasculares/patologia , Ecocardiografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
7.
Magn Reson Med ; 81(4): 2655-2665, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30387898

RESUMO

PURPOSE: Owing to its noninvasive nature, hyperpolarized MRI may improve delineation of myocardial metabolic derangement in heart disease. However, consistency may depend on the changeable nature of cardiac metabolism in relation to whole-body metabolic state. This study investigates the impact of feeding status on cardiac hyperpolarized MRI in a large animal model resembling human physiology. METHODS: Thirteen 30-kg pigs were subjected to an overnight fast, and 5 pigs were fed a carbohydrate-rich meal on the morning of the experiments. Vital parameters and blood samples were registered. All pigs were then scanned by hyperpolarized [1-13 C]pyruvate cardiac MRI, and results were compared between the 2 groups and correlated with circulating substrates and hormones. RESULTS: The fed group had higher blood glucose concentration and mean arterial pressure than the fasted group. Plasma concentrations of free fatty acids (FFAs) were decreased in the fed group, whereas plasma insulin concentrations were similar between groups. Hyperpolarized MRI showed that fed animals had increased lactate/pyruvate, alanine/pyruvate, and bicarbonate/pyruvate ratios. Metabolic ratios correlated negatively with FFA levels. CONCLUSION: Hyperpolarized MR can identify the effects of different metabolic states on cardiac metabolism in a large animal model. Unlike previous rodent studies, all metabolic derivatives of pyruvate increased in the myocardium of fed pigs. Carbohydrate-rich feeding seems to be a feasible model for standardized, large animal hyperpolarized MRI studies of myocardial carbohydrate metabolism.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Coração/diagnóstico por imagem , Miocárdio/metabolismo , Ácido Pirúvico/metabolismo , Animais , Glicemia/análise , Carboidratos/química , Jejum , Ácidos Graxos não Esterificados/sangue , Ventrículos do Coração/patologia , Hormônios , Humanos , Modelos Animais , Suínos
8.
Sci Rep ; 8(1): 15082, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305655

RESUMO

Hyperpolarised MRI with Dynamic Nuclear Polarisation overcomes the fundamental thermodynamic limitations of conventional magnetic resonance, and is translating to human studies with several early-phase clinical trials in progress including early reports that demonstrate the utility of the technique to observe lactate production in human brain cancer patients. Owing to the fundamental coupling of metabolism and tissue function, metabolic neuroimaging with hyperpolarised [1-13C]pyruvate has the potential to be revolutionary in numerous neurological disorders (e.g. brain tumour, ischemic stroke, and multiple sclerosis). Through the use of [1-13C]pyruvate and ethyl-[1-13C]pyruvate in naïve brain, a rodent model of metastasis to the brain, or porcine brain subjected to mannitol osmotic shock, we show that pyruvate transport across the blood-brain barrier of anaesthetised animals is rate-limiting. We show through use of a well-characterised rat model of brain metastasis that the appearance of hyperpolarized [1-13C]lactate production corresponds to the point of blood-brain barrier breakdown in the disease. With the more lipophilic ethyl-[1-13C]pyruvate, we observe pyruvate production endogenously throughout the entire brain and lactate production only in the region of disease. In the in vivo porcine brain we show that mannitol shock permeabilises the blood-brain barrier sufficiently for a dramatic 90-fold increase in pyruvate transport and conversion to lactate in the brain, which is otherwise not resolvable. This suggests that earlier reports of whole-brain metabolism in anaesthetised animals may be confounded by partial volume effects and not informative enough for translational studies. Issues relating to pyruvate transport and partial volume effects must therefore be considered in pre-clinical studies investigating neuro-metabolism in anaesthetised animals, and we additionally note that these same techniques may provide a distinct biomarker of blood-brain barrier permeability in future studies.


Assuntos
Barreira Hematoencefálica/metabolismo , Isótopos de Carbono/metabolismo , Imageamento por Ressonância Magnética , Ácido Pirúvico/metabolismo , Animais , Transporte Biológico , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Feminino , Humanos , Cinética , Manitol/administração & dosagem , Manitol/farmacologia , Ratos , Suínos
9.
Magn Reson Med ; 80(5): 2053-2061, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29524236

RESUMO

PURPOSE: Deranged metabolism is now recognized as a key causal factor in a variety of heart diseases, and is being studied extensively. However, invasive methods may alter metabolism, and conventional imaging techniques measure tracer uptake but not downstream metabolism. These challenges may be overcome by hyperpolarized MR, a noninvasive technique currently crossing the threshold into human trials. The aim of this study was to image metabolic changes in the heart in response to endogastric glucose bolus and to acute hypertension. METHODS: Five postprandial pigs were scanned with hyperpolarized [1-13 C]pyruvate cardiac MR at baseline, after oral glucose bolus, and after infusion of angiotensin-II. RESULTS: No effect of glucose bolus was seen using hyperpolarized [1-13 C]pyruvate MR despite changes in circulating substrates. During angiotensin-II infusion, blood pressure increased 179% (P = 0.008) and ejection fraction decreased from 54 ± 2% to 47 ± 6% (P = 0.03) The hemodynamic changes were accompanied by increases in the hyperpolarized [1-13 C]pyruvate MR derived ratios of lactate/alanine (from 0.58 ± 0.13 to 0.78 ± 0.06, P = 0.03) and bicarbonate/alanine (from 0.55 ± 0.12 to 0.91 ± 0.14, P = 0.007). CONCLUSION: Glucose loading did not alter cardiac metabolism, but during acute hypertensive stress, cardiac aerobic, carbohydrate metabolism, and pyruvate-lactate exchange was altered. Hyperpolarized MR allows noninvasive evaluation of acute changes in cardiac metabolism. However, hemodynamics must be taken into account when interpreting the results.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Técnicas de Imagem Cardíaca/métodos , Coração/diagnóstico por imagem , Hipertensão/diagnóstico por imagem , Ácido Pirúvico/química , Animais , Feminino , Hemodinâmica/fisiologia , Imagem Cinética por Ressonância Magnética , Ácido Pirúvico/uso terapêutico , Suínos
11.
NMR Biomed ; 30(6)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28186677

RESUMO

Cardiac metabolism has received considerable attention in terms of both diagnostics and prognostics, as well as a novel target for treatment. As human trials involving hyperpolarized magnetic resonance in the heart are imminent, we sought to evaluate the general feasibility of detection of an imposed shift in metabolic substrate utilization during metabolic modulation with glucose-insulin-potassium (GIK) infusion, and thus the limitations associated with this strategy, in a large animal model resembling human physiology. Four [1-13 C]pyruvate injections did not alter the blood pressure or ejection fraction over 180 min. Hyperpolarized [1-13 C]pyruvate conversion showed a generally high reproducibility, with intraclass correlation coefficients between the baseline measurements at 0 and 30 min as follows: lactate to pyruvate, 0.85; alanine to pyruvate, 1.00; bicarbonate to pyruvate, 0.83. This study demonstrates that hyperpolarized [1-13 C]pyruvate imaging is a feasible technique for cardiac studies and shows a generally high reproducibility in fasted large animals. GIK infusion increases the metabolic conversion of pyruvate to its metabolic derivatives lactate, alanine and bicarbonate, but with increased variability.


Assuntos
Isótopos de Carbono/metabolismo , Glucose/metabolismo , Imageamento Tridimensional , Insulina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Potássio/metabolismo , Ácido Pirúvico/metabolismo , Alanina/metabolismo , Animais , Bicarbonatos/metabolismo , Feminino , Ácido Láctico/metabolismo , Monitorização Fisiológica , Sus scrofa
12.
Magn Reson Med ; 78(3): 1131-1135, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27690362

RESUMO

PURPOSE: To study hyperpolarized water as an angiography and perfusion tracer in a large animal model. METHODS: Protons dissolved in deuterium oxide (D2 O) were hyperpolarized in a SPINlab dissolution dynamic nuclear polarization (dDNP) polarizer and subsequently investigated in vivo in a pig model at 3 Tesla (T). Approximately 15 mL of hyperpolarized water was injected in the renal artery by hand over 4-5 s. RESULTS: A liquid state polarization of 5.3 ± 0.9% of 3.8 M protons in 15 mL of deuterium oxide was achieved with a T1 of 24 ± 1 s. This allowed injection through an arterial catheter into the renal artery and subsequently high-contrast imaging of the entire kidney parenchyma over several seconds. The dynamic images allow quantification of tissue perfusion, with a mean cortical perfusion of 504 ± 123 mL/100 mL/min. CONCLUSION: Hyperpolarized water MR imaging was successfully demonstrated as a renal angiography and perfusion method. Quantitative perfusion maps of the kidney were obtained in agreement with literature and control experiments with gadolinium contrast. Magn Reson Med 78:1131-1135, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Óxido de Deutério/química , Rim/irrigação sanguínea , Rim/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Imagem de Perfusão/métodos , Animais , Óxido de Deutério/administração & dosagem , Feminino , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Suínos
13.
Eur J Heart Fail ; 19(1): 69-77, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27790809

RESUMO

AIMS: To determine the effect of the glucagon-like peptide-1 analogue liraglutide on left ventricular function in chronic heart failure patients with and without type 2 diabetes. METHODS AND RESULTS: LIVE was an investigator-initiated, randomised, double-blinded, placebo-controlled multicentre trial. Patients (n = 241) with reduced left ventricular ejection fraction (LVEF ≤45%) were recruited (February 2012 to August 2015). Patients were clinically stable and on optimal heart failure treatment. Intervention was liraglutide 1.8 mg once daily or matching placebo for 24 weeks. The LVEF was similar at baseline in the liraglutide and the placebo group (33.7 ± 7.6% vs. 35.4 ± 9.4%). Change in LVEF did not differ between the liraglutide and the placebo group; mean difference (95% confidence interval) was -0.8% (-2.1, 0.5; P = 0.24). Heart rate increased with liraglutide [mean difference: 7 b.p.m. (5, 9), P < 0.0001]. Serious cardiac events were seen in 12 (10%) patients treated with liraglutide compared with 3 (3%) patients in the placebo group (P = 0.04). CONCLUSION: Liraglutide did not affect left ventricular systolic function compared with placebo in stable chronic heart failure patients with and without diabetes. Treatment with liraglutide was associated with an increase in heart rate and more serious cardiac adverse events, and this raises some concern with respect to the use of liraglutide in patients with chronic heart failure and reduced left ventricular function. More data on the safety of liraglutide in different subgroups of heart failure patients are needed.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Incretinas/uso terapêutico , Liraglutida/uso terapêutico , Volume Sistólico , Função Ventricular Esquerda , Síndrome Coronariana Aguda/epidemiologia , Idoso , Fibrilação Atrial/epidemiologia , Doença Crônica , Diabetes Mellitus Tipo 2/complicações , Progressão da Doença , Método Duplo-Cego , Ecocardiografia , Feminino , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Taquicardia Ventricular/epidemiologia , Taquicardia Ventricular/mortalidade , Resultado do Tratamento , Teste de Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...