Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167295

RESUMO

Despite the constant advances in fluorescence imaging techniques, monitoring endogenous proteins still constitutes a major challenge in particular when considering dynamics studies or super-resolution imaging. We have recently evolved specific protein-based binders for PSD-95, the main postsynaptic scaffold proteins at excitatory synapses. Since the synthetic recombinant binders recognize epitopes not directly involved in the target protein activity, we consider them here as tools to develop endogenous PSD-95 imaging probes. After confirming their lack of impact on PSD-95 function, we validated their use as intrabody fluorescent probes. We further engineered the probes and demonstrated their usefulness in different super-resolution imaging modalities (STED, PALM, and DNA-PAINT) in both live and fixed neurons. Finally, we exploited the binders to enrich at the synapse genetically encoded calcium reporters. Overall, we demonstrate that these evolved binders constitute a robust and efficient platform to selectively target and monitor endogenous PSD-95 using various fluorescence imaging techniques.


Assuntos
Corantes Fluorescentes , Neurônios , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Neurônios/metabolismo , Corantes Fluorescentes/metabolismo , Sinapses/metabolismo
2.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260673

RESUMO

The release of neurotransmitters at central synapses is dependent on a cascade of protein interactions, specific to the presynaptic compartment. Amongst those dedicated molecules the cytosolic complexins play an incompletely defined role as synaptic transmission regulators. Complexins are multidomain SNARE complex binding proteins which confer both inhibitory and stimulatory functions. Using systematic mutagenesis and combining reconstituted in vitro membrane fusion assays with electrophysiology in neurons, we deciphered the function of the N-terminus of complexin II (Cpx). The N-terminus (amino acid 1 - 27) starts with a region enriched in hydrophobic amino acids (1-12), which can lead to lipid binding. In contrast to mutants which maintain the hydrophobic character and the stimulatory function of Cpx, non-conservative exchanges largely perturbed spontaneous and evoked exocytosis. Mutants in the downstream region (amino acid 11-18) show differential effects. Cpx-A12W increased spontaneous release without affecting evoked release whereas replacing D15 with amino acids of different shapes or hydrophobic properties (but not charge) not only increased spontaneous release, but also impaired evoked release and surprisingly reduced the size of the readily releasable pool, a novel Cpx function, unanticipated from previous studies. Thus, the exact amino acid composition of the Cpx N-terminus fine tunes the degree of spontaneous and evoked neurotransmitter release. Significance Statement: We describe in this work the importance of the N-terminal domain of the small regulatory cytosolic protein complexin in spontaneous and evoked glutamatergic neurotransmitter release at hippocampal mouse neurons. We show using a combination of biochemical, imaging and electrophysiological techniques that the binding of the proximal region of complexin (amino acids 1-10) to lipids is crucial for spontaneous synaptic vesicular release. Furthermore, we identify a single amino acid at position D15 which is structurally important since it not only is involved in spontaneous release but, when mutated, also decreases drastically the readily releasable pool, a function that was never attributed to complexin.

3.
Elife ; 122023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622100

RESUMO

Optical report of neurotransmitter release allows visualisation of excitatory synaptic transmission. Sensitive genetically-encoded fluorescent glutamate reporters operating with a range of affinities and emission wavelengths are available. However, without targeting to synapses, the specificity of the fluorescent signal is uncertain, compared to sensors directed at vesicles or other synaptic markers. We fused the state-of-the-art reporter iGluSnFR to glutamate receptor auxiliary proteins in order to target it to postsynaptic sites. Chimeras of Stargazin and gamma-8 that we named SnFR-γ2 and SnFR-γ8, were enriched at synapses, retained function and reported spontaneous glutamate release in rat hippocampal cells, with apparently diffraction-limited spatial precision. In autaptic mouse neurons cultured on astrocytic microislands, evoked neurotransmitter release could be quantitatively detected at tens of synapses in a field of view whilst evoked currents were recorded simultaneously. These experiments revealed a specific postsynaptic deficit from Stargazin overexpression, resulting in synapses with normal neurotransmitter release but without postsynaptic responses. This defect was reverted by delaying overexpression. By working at different calcium concentrations, we determined that SnFR-γ2 is a linear reporter of the global quantal parameters and short-term synaptic plasticity, whereas iGluSnFR is not. On average, half of iGluSnFR regions of interest (ROIs) showing evoked fluorescence changes had intense rundown, whereas less than 5% of SnFR-γ2 ROIs did. We provide an open-source analysis suite for extracting quantal parameters including release probability from fluorescence time series of individual and grouped synaptic responses. Taken together, postsynaptic targeting improves several properties of iGluSnFR and further demonstrates the importance of subcellular targeting for optogenetic actuators and reporters.


Assuntos
Sinapses , Transmissão Sináptica , Ratos , Camundongos , Animais , Transmissão Sináptica/fisiologia , Sinapses/fisiologia , Neurônios/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Neurotransmissores/metabolismo
4.
Mol Psychiatry ; 26(2): 629-644, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31911635

RESUMO

ATP signaling and surface P2X4 receptors are upregulated selectively in neurons and/or glia in various CNS disorders including anxiety, chronic pain, epilepsy, ischemia, and neurodegenerative diseases. However, the cell-specific functions of P2X4 in pathological contexts remain elusive. To elucidate P2X4 functions, we created a conditional transgenic knock-in P2X4 mouse line (Floxed P2X4mCherryIN) allowing the Cre activity-dependent genetic swapping of the internalization motif of P2X4 by the fluorescent mCherry protein to prevent constitutive endocytosis of P2X4. By combining molecular, cellular, electrophysiological, and behavioral approaches, we characterized two distinct knock-in mouse lines expressing noninternalized P2X4mCherryIN either exclusively in excitatory forebrain neurons or in all cells natively expressing P2X4. The genetic substitution of wild-type P2X4 by noninternalized P2X4mCherryIN in both knock-in mouse models did not alter the sparse distribution and subcellular localization of P2X4 but increased the number of P2X4 receptors at the surface of the targeted cells mimicking the pathological increased surface P2X4 state. Increased surface P2X4 density in the hippocampus of knock-in mice altered LTP and LTD plasticity phenomena at CA1 synapses without affecting basal excitatory transmission. Moreover, these cellular events translated into anxiolytic effects and deficits in spatial memory. Our results show that increased surface density of neuronal P2X4 contributes to synaptic deficits and alterations in anxiety and memory functions consistent with the implication of P2X4 in neuropsychiatric and neurodegenerative disorders. Furthermore, these conditional P2X4mCherryIN knock-in mice will allow exploring the cell-specific roles of P2X4 in various physiological and pathological contexts.


Assuntos
Ansiedade , Memória , Receptores Purinérgicos P2X4 , Sinapses , Animais , Ansiedade/genética , Técnicas de Introdução de Genes , Hipocampo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal , Neurônios , Receptores Purinérgicos P2X4/genética
5.
Biol Psychiatry ; 79(5): 354-361, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25146322

RESUMO

BACKGROUND: ΔFosB is a surrogate marker of L-DOPA-induced dyskinesia (LID), the unavoidable disabling consequence of Parkinson's disease L-DOPA long-term treatment. However, the relationship between the electrical activity of FosB/ΔFosB-expressing neurons and LID manifestation is unknown. METHODS: We used the Daun02 prodrug-inactivation method associated with lentiviral expression of ß-galactosidase under the control of the FosB promoter to investigate a causal link between the activity of FosB/ΔFosB-expressing neurons and dyskinesia severity in both rat and monkey models of Parkinson's disease and LID. Whole-cell recordings of medium spiny neurons (MSNs) were performed to assess the effects of Daun02 and daunorubicin on neuronal excitability. RESULTS: We first show that daunorubicin, the active product of Daun02 metabolism by ß-galactosidase, decreases the activity of MSNs in rat brain slices and that Daun02 strongly decreases the excitability of rat MSN primary cultures expressing ß-galactosidase upon D1 dopamine receptor stimulation. We then demonstrate that the selective, and reversible, inhibition of FosB/ΔFosB-expressing striatal neurons with Daun02 decreases the severity of LID while improving the beneficial effect of L-DOPA. CONCLUSIONS: These results establish that FosB/ΔFosB accumulation ultimately results in altered neuronal electrical properties sustaining maladaptive circuits leading not only to LID but also to a blunted response to L-DOPA. These findings further reveal that targeting dyskinesia can be achieved without reducing the antiparkinsonian properties of L-DOPA when specifically inhibiting FosB/ΔFosB-accumulating neurons.


Assuntos
Antiparkinsonianos/efeitos adversos , Daunorrubicina/análogos & derivados , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/efeitos adversos , Neostriado/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Doença de Parkinson/complicações , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Daunorrubicina/administração & dosagem , Modelos Animais de Doenças , Macaca fascicularis , Masculino , Oxidopamina/administração & dosagem , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo
6.
Neuron ; 85(4): 787-803, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25661182

RESUMO

Short-term plasticity of AMPAR currents during high-frequency stimulation depends not only on presynaptic transmitter release and postsynaptic AMPAR recovery from desensitization, but also on fast AMPAR diffusion. How AMPAR diffusion within the synapse regulates synaptic transmission on the millisecond scale remains mysterious. Using single-molecule tracking, we found that, upon glutamate binding, synaptic AMPAR diffuse faster. Using AMPAR stabilized in different conformational states by point mutations and pharmacology, we show that desensitized receptors bind less stargazin and are less stabilized at the synapse than receptors in opened or closed-resting states. AMPAR mobility-mediated regulation of short-term plasticity is abrogated when the glutamate-dependent loss in AMPAR-stargazin interaction is prevented. We propose that transition from the activated to the desensitized state leads to partial loss in AMPAR-stargazin interaction that increases AMPAR mobility and allows faster recovery from desensitization-mediated synaptic depression, without affecting the overall nano-organization of AMPAR in synapses.


Assuntos
Canais de Cálcio/metabolismo , Ácido Glutâmico/farmacologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Animais , Canais de Cálcio/genética , Células Cultivadas , Embrião de Mamíferos , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Hipocampo/citologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/genética , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética , Transmissão Sináptica/fisiologia
7.
Neuron ; 83(2): 417-430, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25033184

RESUMO

P2X receptors (P2XRs) are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons or glia. Although purinergic signaling has multiple effects on synaptic transmission and plasticity, P2XR function at brain synapses remains to be established. Here, we show that activation of postsynaptic P2XRs by exogenous ATP or noradrenaline-dependent glial release of endogenous ATP decreases the amplitude of miniature excitatory postsynaptic currents and AMPA-evoked currents in cultured hippocampal neurons. We also observed a P2X-mediated depression of field potentials recorded in CA1 region from brain slices. P2X2Rs trigger dynamin-dependent internalization of AMPA receptors (AMPARs), leading to reduced surface AMPARs in dendrites and at synapses. AMPAR alteration required calcium influx through opened ATP-gated channels and phosphatase or CamKII activities. These findings indicate that postsynaptic P2XRs play a critical role in regulating the surface expression of AMPARs and thereby regulate the synaptic strength.


Assuntos
Trifosfato de Adenosina/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Receptores Purinérgicos P2X/metabolismo , Sinapses/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Células Cultivadas , Regulação para Baixo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
8.
J Biol Chem ; 287(18): 14734-48, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22393055

RESUMO

ATP-gated ionotropic P2X4 receptors are up-regulated in activated microglia and are critical for the development of neuropathic pain, a microglia-associated disorder. However, the nature of how plasma membrane P2X4 receptors are regulated in microglia is not fully understood. We used single-molecule imaging to track quantum dot-labeled P2X4 receptors to explore P2X4 receptor mobility in the processes of resting and activated microglia. We find that plasma membrane P2X4 receptor lateral mobility in resting microglial processes is largely random, consisting of mobile and slowly mobile receptors. Moreover, lateral mobility is P2X subunit- and cell-specific, increased in an ATP activation and calcium-dependent manner, and enhanced in activated microglia by the p38 MAPK pathway that selectively regulates slowly mobile receptors. Thus, our data indicate that P2X4 receptors are dynamically regulated mobile ATP sensors, sampling more of the plasma membrane in response to ATP and during the activated state of microglia that is associated with nervous system dysfunction.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Sistema de Sinalização das MAP Quinases , Microglia/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Membrana Celular/genética , Células HEK293 , Humanos , Neuralgia/genética , Neuralgia/metabolismo , Transporte Proteico/genética , Pontos Quânticos , Ratos , Receptores Purinérgicos P2X4/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
9.
J Biol Chem ; 286(22): 19993-20004, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21482824

RESUMO

The essence of neuronal function is to generate outputs in response to synaptic potentials. Synaptic integration at postsynaptic sites determines neuronal outputs in the CNS. Using immunohistochemical and electrophysiological approaches, we first reveal that steroidogenic factor 1 (SF-1) green fluorescent protein (GFP)-positive neurons in the ventromedial nucleus of the hypothalamus express P2X4 subunits that are activated by exogenous ATP. Increased membrane expression of P2X4 channels by using a peptide competing with P2X4 intracellular endocytosis motif enhances neuronal excitability of SF-1 GFP-positive neurons. This increased excitability is inhibited by a P2X receptor antagonist. Furthermore, increased surface P2X4 receptor expression significantly decreases the frequency and the amplitude of GABAergic postsynaptic currents of SF-1 GFP-positive neurons. Co-immunopurification and pulldown assays reveal that P2X4 receptors complex with aminobutyric acid, type A (GABA(A)) receptors and demonstrate that two amino acids in the carboxyl tail of the P2X4 subunit are crucial for its physical association with GABA(A) receptors. Mutation of these two residues prevents the physical association, thereby blocking cross-inhibition between P2X4 and GABA(A) receptors. Moreover, disruption of the physical coupling using competitive peptides containing the identified motif abolishes current inhibition between P2X4 and GABA(A) receptors in recombinant system and P2X4 receptor-mediated GABAergic depression in SF-1 GFP-positive neurons. Our present work thus provides evidence for cross-talk between excitatory and inhibitory receptors that appears to be crucial in determining GABAergic synaptic strength at a central synapse.


Assuntos
Receptores de GABA-A/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Sinapses/metabolismo , Motivos de Aminoácidos , Animais , Camundongos , Camundongos Transgênicos , Estrutura Terciária de Proteína/fisiologia , Ratos , Receptores de GABA-A/genética , Receptores Purinérgicos P2X4/genética , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Sinapses/genética , Xenopus laevis
10.
J Gen Physiol ; 135(4): 333-53, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20231374

RESUMO

We investigated the properties and regulation of P2X receptors in immortalized C8-B4 cells of cerebellar microglial origin. Resting C8-B4 cells expressed virtually no functional P2X receptors, but largely increased functional expression of P2X4 receptors within 2-6 h of entering the activated state. Using real-time polymerase chain reaction, we found that P2X4 transcripts were increased during the activated state by 2.4-fold, but this increase was not reflected by a parallel increase in total P2X4 proteins. In resting C8-B4 cells, P2X4 subunits were mainly localized within intracellular compartments, including lysosomes. We found that cell surface P2X4 receptor levels increased by approximately 3.5-fold during the activated state. This change was accompanied by a decrease in the lysosomal pool of P2X4 proteins. We next exploited our findings with C8-B4 cells to investigate the mechanism by which antidepressants reduce P2X4 responses. We found little evidence to suggest that several antidepressants were antagonists of P2X4 receptors in C8-B4 cells. However, we found that moderate concentrations of the same antidepressants reduced P2X4 responses in activated microglia by affecting lysosomal function, which indirectly reduced cell surface P2X4 levels. In summary, our data suggest that activated C8-B4 cells express P2X4 receptors when the membrane insertion of these proteins by lysosomal secretion exceeds their removal, and that antidepressants indirectly reduce P2X4 responses by interfering with lysosomal trafficking.


Assuntos
Antidepressivos/administração & dosagem , Cerebelo/metabolismo , Neuroglia/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Linhagem Celular , Cerebelo/efeitos dos fármacos , Camundongos , Neuroglia/efeitos dos fármacos , Receptores Purinérgicos P2/efeitos dos fármacos , Receptores Purinérgicos P2X4
11.
Sci Signal ; 1(41): ra8, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18922787

RESUMO

Extracellular adenosine triphosphate (ATP) activates P2X receptors, which are involved in diverse physiological functions. Using a proteomic approach, we identified the neuronal calcium sensor VILIP1 as interacting with P2X2 receptors. We found that VILIP1 forms a signaling complex in vitro and in vivo with P2X2 receptors and regulates P2X2 receptor sensitivity to ATP, peak response, surface expression, and diffusion. VILIP1 constitutively binds to P2X2 receptors and displays enhanced interactions in an activation- and calcium-dependent manner owing to exposure of its binding segment in P2X2 receptors. VILIP1-P2X2 interactions are also enhanced in hippocampal neurons during conditions of action potential firing known to trigger P2X2 receptor activation. Our data thus reveal a previously unrecognized function for the neuronal calcium sensor protein VILIP1 and a mechanism for regulation of ATP-dependent P2X receptor signaling by neuronal calcium sensors.


Assuntos
Cálcio/metabolismo , Hipocampo/metabolismo , Complexos Multiproteicos/metabolismo , Neurocalcina/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/fisiologia , Potenciais de Ação/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Complexos Multiproteicos/genética , Neurocalcina/genética , Neurônios/metabolismo , Ligação Proteica/fisiologia , Proteômica/métodos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X2
12.
J Neurochem ; 102(4): 1357-68, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17498217

RESUMO

Functional cross-talk between structurally unrelated P2X ATP receptors and members of the 'cys-loop' receptor-channel superfamily represents a recently-discovered mechanism for rapid modulation of information processing. The extent and the mechanism of the inhibitory cross-talks between these two classes of ionotropic receptors remain poorly understood, however. Both ionic and molecular coupling were proposed to explain cross-inhibition between P2X subtypes and GABA(A) receptors, suggesting a P2X subunit-dependent mechanism. We show here that cross-inhibition between neuronal P2X(3) or P2X(2+3) and GABA(A) receptors does not depend on chloride and calcium ions. We identified an intracellular QST(386-388) motif in P2X(3) subunits which is required for the functional coupling with GABA(A) receptors. Moreover the cross-inhibition between native P2X(3) and GABA receptors in cultured rat dorsal root ganglia (DRG) neurons is abolished by infusion of a peptide containing the QST motif as well as by viral expression of the main intracellular loop of GABA(A)beta3 subunits. We provide evidence that P2X(3) and GABA(A) receptors are colocalized in the soma and central processes of nociceptive DRG neurons, suggesting that specific intracellular P2X(3)-GABA(A) subunit interactions underlie a pre-synaptic cross-talk that might contribute to the regulation of sensory synaptic transmission in the spinal cord.


Assuntos
Gânglios Espinais/citologia , Neurônios/metabolismo , Receptores de GABA-A/fisiologia , Receptores Purinérgicos P2/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Células Cultivadas , Citoplasma/efeitos dos fármacos , Citoplasma/fisiologia , Interações Medicamentosas/fisiologia , Estimulação Elétrica/métodos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos da radiação , Modelos Biológicos , Mutação/fisiologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios/citologia , Oócitos , Técnicas de Patch-Clamp/métodos , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X3 , Xenopus laevis , Ácido gama-Aminobutírico/farmacologia
13.
Mol Pharmacol ; 69(2): 576-87, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16282518

RESUMO

Although P2X receptors within the central nervous system mediate excitatory ATP synaptic transmission, the identity of central ATP-gated channels has not yet been elucidated. P2X(4), the most widely expressed subunit in the brain, was previously shown to undergo clathrin-dependent constitutive internalization by direct interaction between activator protein (AP)2 adaptors and a tyrosine-based sorting signal specifically present in the cytosolic C-terminal tail of mammalian P2X(4) sequences. In this study, we first used internalization-deficient P2X(4) receptor mutants to show that suppression of the endocytosis motif significantly increased the apparent sensitivity to ATP and the ionic permeability of P2X(4) channels. These unique properties, observed at low channel density, suggest that interactions with AP2 complexes may modulate the function of P2X(4) receptors. In addition, ivermectin, an allosteric modulator of several receptor channels, including mammalian P2X(4), did not potentiate the maximal current of internalization-deficient rat or human P2X(4) receptors. We demonstrated that binding of ivermectin onto wild-type P2X(4) channels increased the fraction of plasma membrane P2X(4) receptors, whereas surface expression of internalization-deficient P2X(4) receptors remained unchanged. Disruption of the clathrin-mediated endocytosis with the dominant-negative mutants Eps15 or AP-50 abolished the ivermectin potentiation of wild-type P2X(4) channel currents. Likewise, ivermectin increased the membrane fraction of nicotinic alpha7 acetylcholine (nalpha7ACh) receptors and the potentiation of acetylcholine current by ivermectin was suppressed when the same dominant-negative mutants were expressed. These data showed that potentiation by ivermectin of both P2X(4) and nalpha7ACh receptors was primarily caused by an increase in the number of cell surface receptors resulting from a mechanism dependent on clathrin/AP2-mediated endocytosis.


Assuntos
Antiparasitários/farmacologia , Endocitose/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Ivermectina/farmacologia , Receptores Purinérgicos P2/fisiologia , Trifosfato de Adenosina/farmacologia , Motivos de Aminoácidos , Animais , Membrana Celular/química , Endocitose/genética , Humanos , Canais Iônicos/efeitos dos fármacos , Ligantes , Mutação , Oócitos/química , Oócitos/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Ratos , Receptores Nicotínicos/análise , Receptores Nicotínicos/metabolismo , Receptores Purinérgicos P2/análise , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X4 , Receptor Nicotínico de Acetilcolina alfa7
14.
J Biol Chem ; 279(50): 52517-25, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15456793

RESUMO

ATP and gamma-aminobutyric acid (GABA) are two fast neurotransmitters co-released at central synapses, where they co-activate excitatory P2X and inhibitory GABAA (GABA type A) receptors. We report here that co-activation of P2X2 and various GABAA receptors, co-expressed in Xenopus oocytes, leads to a functional cross-inhibition dependent on GABAA subunit composition. Sequential applications of GABA and ATP revealed that alphabeta- or alphabetagamma-containing GABAA receptors inhibited P2X2 channels, whereas P2X2 channels failed to inhibit gamma-containing GABAA receptors. This functional cross-talk is independent of membrane potential, changes in current direction, and calcium. Non-additive responses observed between cation-selective GABAA and P2X2 receptors further indicate the chloride independence of this process. Overexpression of minigenes encoding either the C-terminal fragment of P2X2 or the intracellular loop of the beta3 subunit disrupted the functional cross-inhibition. We previously demonstrated functional and physical cross-talk between rho1 and P2X2 receptors, which induced a retargeting of rho1 channels to surface clusters when co-expressed in hippocampal neurons (Boue-Grabot, E., Emerit, M. B., Toulme, E., Seguela, P., and Garret, M. (2004) J. Biol. Chem. 279, 6967-6975). Co-expression of P2X2 and chimeric rho1 receptors with the C-terminal sequences of alpha2, beta3, or gamma2 subunits indicated that only rho1-beta3 and P2X2 channels exhibit both functional cross-inhibition in Xenopus oocytes and co-clustering/retargeting in hippocampal neurons. Therefore, the C-terminal domain of P2X2 and the intracellular loop of beta GABAA subunits are required for the functional interaction between ATP- and GABA-gated channels. This gamma subunit-dependent cross-talk may contribute to the regulation of synaptic activity.


Assuntos
Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Receptores Purinérgicos P2/química , Receptores Purinérgicos P2/metabolismo , Animais , Cálcio/metabolismo , Cloretos/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Potenciais da Membrana , Neurônios/metabolismo , Oócitos/metabolismo , Subunidades Proteicas , Ratos , Receptor Cross-Talk , Receptores de GABA-A/genética , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X2 , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transmissão Sináptica , Xenopus
15.
J Biol Chem ; 279(8): 6967-75, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14660627

RESUMO

Gamma-aminobutyric-acid (GABA) and ATP ionotropic receptors represent two structurally and functionally different classes of neurotransmitter-gated channels involved in fast synaptic transmission. We demonstrate here that, when the inhibitory rho1/GABA and the excitatory P2X2 receptor channels are co-expressed in Xenopus oocytes, activation of one channel reduces the currents mediated by the other one. This reciprocal inhibitory cross-talk is a receptor-mediated phenomenon independent of agonist cross-modulation, membrane potential, direction of ionic flux, or channel densities. Functional interaction is disrupted when the cytoplasmic C-terminal domain of P2X2 is deleted or in competition experiments with minigenes coding for the C-terminal domain of P2X2 or the main intracellular loop of rho1 subunits. We also show a physical interaction between P2X2 and rho1 receptors expressed in oocytes and the co-clustering of these receptors in transfected hippocampal neurons. Co-expression with P2X2 induces retargeting and recruitment of mainly intracellular rho1/GABA receptors to surface clusters. Therefore, molecular and functional cross-talk between inhibitory and excitatory ligand-gated channels may regulate synaptic strength both by activity-dependent current occlusion and synaptic receptors co-trafficking.


Assuntos
Trifosfato de Adenosina/química , Receptores de GABA-B/química , Proteínas rho de Ligação ao GTP/química , Trifosfato de Adenosina/farmacologia , Animais , Western Blotting , Cálcio/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Eletrofisiologia , Imuno-Histoquímica , Íons , Ligantes , Potenciais da Membrana , Microscopia Confocal , Microscopia de Fluorescência , Neurônios/metabolismo , Oócitos/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Receptores de GABA-B/metabolismo , Receptores Purinérgicos P2/química , Receptores Purinérgicos P2X2 , Transfecção , Xenopus/metabolismo , Ácido gama-Aminobutírico/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...