Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(3)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37466229

RESUMO

The UV photochemistry of small heteroaromatic molecules serves as a testbed for understanding fundamental photo-induced chemical transformations in moderately complex compounds, including isomerization, ring-opening, and molecular dissociation. Here, a combined experimental-theoretical study of 268 nm UV light-induced dynamics in 2-iodothiophene (C4H3IS) is performed. The dynamics are experimentally monitored with a femtosecond extreme ultraviolet (XUV) probe that measures iodine N-edge 4d core-to-valence transitions. Experiments are complemented by density functional theory calculations of both the pump-pulse induced valence excitations and the XUV probe-induced core-to-valence transitions. Possible intramolecular relaxation dynamics are investigated by ab initio molecular dynamics simulations. Gradual absorption changes up to ∼0.5 to 1 ps after excitation are observed for both the parent molecular species and emerging iodine fragments, with the latter appearing with a characteristic rise time of 160 ± 30 fs. Comparison of spectral intensities and energies with the calculations identifies an iodine dissociation pathway initiated by a predominant π → π* excitation. In contrast, initial excitation to a nearby n⟂ → σ* state appears unlikely based on a significantly smaller oscillator strength and the absence of any corresponding XUV absorption signatures. Excitation to the π → π* state is followed by contraction of the C-I bond, enabling a nonadiabatic transition to a dissociative π→σC-I* state. For the subsequent fragmentation, a relatively narrow bond-length region along the C-I stretch coordinate between 230 and 280 pm is identified, where the transition between the parent molecule and the thienyl radical + iodine atom products becomes prominent in the XUV spectrum due to rapid localization of two singly occupied molecular orbitals on the two fragments.

2.
Sci Adv ; 8(46): eade4247, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383646

RESUMO

Spectral imaging in the mid-infrared (MIR) range provides simultaneous morphological and chemical information of a wide variety of samples. However, current MIR technologies struggle to produce high-definition images over a broad spectral range at acquisition rates that are compatible with real-time processes. We present a novel spectral imaging technique based on nondegenerate two-photon absorption of temporally chirped optical MIR pulses. This approach avoids complex image processing or reconstruction and enables high-speed acquisition of spectral data cubes (xyω) at high-pixel density in under a second.

3.
Sci Adv ; 7(50): eabk2247, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890219

RESUMO

Quantum fluid droplets made of helium-3 (3He) or helium-4 (4He) isotopes have long been considered as ideal cryogenic nanolabs, enabling unique ultracold chemistry and spectroscopy applications. The droplets were believed to provide a homogeneous environment in which dopant atoms and molecules could move and react almost as in free space but at temperatures close to absolute zero. Here, we report ultrafast x-ray diffraction experiments on xenon-doped 3He and 4He nanodroplets, demonstrating that the unavoidable rotational excitation of isolated droplets leads to highly anisotropic and inhomogeneous interactions between the host matrix and enclosed dopants. Superfluid 4He droplets are laced with quantum vortices that trap the embedded particles, leading to the formation of filament-shaped clusters. In comparison, dopants in 3He droplets gather in diffuse, ring-shaped structures along the equator. The shapes of droplets carrying filaments or rings are direct evidence that rotational excitation is the root cause for the inhomogeneous dopant distributions.

4.
Opt Express ; 29(22): 35135-35148, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34808953

RESUMO

We demonstrate a 40x mean noise power reduction (NPR) in core-to-valence extreme ultraviolet (XUV) femtosecond transient absorption spectroscopy with a high harmonic generation (HHG) light source. An adaptive iteratively reweighted principal component regression (airPCR) is used to analyze and suppress spectrally correlated HHG intensity fluctuations. The technique requires significantly less user input and leads to a higher mean NPR than a previously introduced edge-pixel PCR method that relies on the manual identification of signal-free spectral regions. Both techniques are applied in a time-resolved XUV absorption study of the 2snp1Po (n ≥ 2) autoionizing Rydberg states of helium, demonstrating sub-10-3 optical density sensitivity.

5.
Phys Rev Lett ; 124(21): 215301, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530661

RESUMO

The angular momentum of rotating superfluid droplets originates from quantized vortices and capillary waves, the interplay between which remains to be uncovered. Here, the rotation of isolated submicrometer superfluid ^{4}He droplets is studied by ultrafast x-ray diffraction using a free electron laser. The diffraction patterns provide simultaneous access to the morphology of the droplets and the vortex arrays they host. In capsule-shaped droplets, vortices form a distorted triangular lattice, whereas they arrange along elliptical contours in ellipsoidal droplets. The combined action of vortices and capillary waves results in droplet shapes close to those of classical droplets rotating with the same angular velocity. The findings are corroborated by density functional theory calculations describing the velocity fields and shape deformations of a rotating superfluid cylinder.

6.
Struct Dyn ; 6(5): 054304, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31649963

RESUMO

UV pump-extreme UV (XUV) probe femtosecond transient absorption spectroscopy is used to study the 268 nm induced photodissociation dynamics of bromoform (CHBr3). Core-to-valence transitions at the Br(3d) absorption edge (∼70 eV) provide an atomic scale perspective of the reaction, sensitive to changes in the local valence electronic structure, with ultrafast time resolution. The XUV spectra track how the singly occupied molecular orbitals of transient electronic states develop throughout the C-Br bond fission, eventually forming radical Br and CHBr2 products. Complementary ab initio calculations of XUV spectral fingerprints are performed for transient atomic arrangements obtained from sampling excited-state molecular dynamics simulations. C-Br fission along an approximately C S symmetrical reaction pathway leads to a continuous change of electronic orbital characters and atomic arrangements. Two timescales dominate changes in the transient absorption spectra, reflecting the different characteristic motions of the light C and H atoms and the heavy Br atoms. Within the first 40 fs, distortion from C 3 v symmetry to form a quasiplanar CHBr2 by the displacement of the (light) CH moiety causes significant changes to the valence electronic structure. Displacement of the (heavy) Br atoms is delayed and requires up to ∼300 fs to form separate Br + CHBr2 products. We demonstrate that transitions between the valence-excited (initial) and valence + core-excited (final) state electronic configurations produced by XUV absorption are sensitive to the localization of valence orbitals during bond fission. The change in valence electron-core hole interaction provides a physical explanation for spectral shifts during the process of bond cleavage.

7.
Phys Chem Chem Phys ; 20(4): 2457-2469, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29313039

RESUMO

The photodissociation dynamics of acetone has been investigated using velocity-map ion imaging and photofragment excitation (PHOFEX) spectroscopy across a range of wavelengths spanning the first absorption band (236-308 nm). The radical products of the Norrish Type I dissociation, methyl and acetyl, as well as the molecular product ketene have been detected by single-photon VUV ionization at 118 nm. Ketene appears to be formed with non-negligible yield at all wavelengths, with a maximum value of Φ ≈ 0.3 at 280 nm. The modest translational energy release is inconsistent with dissociation over high barriers on the S0 surface, and ketene formation is tentatively assigned to a roaming pathway involving frustrated dissociation to the radical products. Fast-moving radical products are detected at λ ≤ 305 nm with total translational energy distributions that extend to the energetic limit, consistent with dissociation occurring near-exclusively on the T1 surface following intersystem crossing. At energies below the T1 barrier a statistical component indicative of S0 dissociation is observed, although dissociation via the S1/S0 conical intersection is absent at shorter wavelengths, in contrast to acetaldehyde. The methyl radical yield is enhanced over that of acetyl in PHOFEX spectra at λ ≤ 260 nm due to the onset of secondary dissociation of internally excited acetyl radicals. Time-resolved ion imaging experiments using picosecond duration pulses at 266 nm find an appearance time constant of τ = 1490 ± 140 ps for CH3 radicals formed on T1. The associated rate is representative of S1 → T1 intersystem crossing. At 284 nm, CH3 is formed on T1 with two distinct timescales: a fast <10 ns component is accompanied by a slower component with τ = 42 ± 7 ns. A two-step mechanism involving fast internal conversion, followed by slower intersystem crossing (S1 → S0 → T1) is proposed to explain the slow component.

8.
Phys Chem Chem Phys ; 19(46): 31039-31053, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29160321

RESUMO

Photolysis of geminal diiodoalkanes in the presence of molecular oxygen has become an established route to the laboratory production of several Criegee intermediates, and such compounds also have marine sources. Here, we explore the role that the trihaloalkane, chlorodiiodomethane (CHI2Cl), may play as a photolytic precursor for the chlorinated Criegee intermediate ClCHOO. CHI2Cl has been synthesized and its UV absorption spectrum measured; relative to that of CH2I2 the spectrum is shifted to longer wavelength and the photolysis lifetime is calculated to be less than two minutes. The photodissociation dynamics have been investigated using DC slice imaging, probing ground state I and spin-orbit excited I* atoms with 2 + 1 REMPI and single-photon VUV ionization. Total translational energy distributions are bimodal for I atoms and unimodal for I*, with around 72% of the available energy partitioned in to the internal degrees of freedom of the CHICl radical product, independent of photolysis wavelength. A bond dissociation energy of D0 = 1.73 ± 0.11 eV is inferred from the wavelength dependence of the translational energy release, which is slightly weaker than typical C-I bonds. Analysis of the photofragment angular distributions indicate dissociation is prompt and occurs primarily via transitions to states of A'' symmetry. Complementary high-level MRCI calculations, including spin-orbit coupling, have been performed to characterize the excited states and confirm that states of A'' symmetry with highly mixed singlet and triplet character are predominantly responsible for the absorption spectrum. Transient absorption spectroscopy has been used to measure the absorption spectrum of ClCHOO produced from the reaction of CHICl with O2 over the range 345-440 nm. The absorption spectrum, tentatively assigned to the syn conformer, is at shorter wavelengths relative to that of CH2OO and shows far weaker vibrational structure.

9.
Phys Chem Chem Phys ; 19(22): 14276-14288, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28537300

RESUMO

Time-resolved ion imaging measurements have been performed to explore the photochemistry of acetaldehyde at photolysis wavelengths spanning the range 265-328 nm. Ion images recorded probing CH3 radicals with single-photon VUV ionization show different dissociation dynamics in three distinct wavelength regions. At the longest photolysis wavelengths, λ > 318 nm, CH3 radicals are formed over tens of nanoseconds with a speed distribution that is consistent with statistical unimolecular dissociation on the S0 surface following internal conversion. In the range 292 nm ≤ λ ≤ 318 nm, dissociation occurs almost exclusively on the T1 surface following intersystem crossing and passage over a barrier, leading to the available energy being partitioned primarily into photofragment recoil. The CH3 speed distributions become bimodal at λ < 292 nm. In addition to the translationally fast T1 products, a new translationally slow, but non-statistical, component appears and grows in importance as the photolysis wavelength is decreased. Photofragment excitation (PHOFEX) spectra of CH3CHO obtained probing CH3 and HCO products are identical across the absorption band, indicating that three-body fragmentation is not responsible for the non-statistical slow component. Rather, translationally slow products are attributed to dissociation on S0, accessed via a conical intersection between the S1 and S0 surfaces at extended C-C distances. Time-resolved ion images of CH3 radicals measured using a picosecond laser operating at a photolysis wavelength of 266 nm show that product formation on T1 and S0via the conical intersection occurs with time constants of 240 ps and 560 ps, respectively.

10.
J Phys Chem A ; 120(34): 6745-52, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27552402

RESUMO

Photofragment excitation spectra of carbonyl sulfide (OCS) have been recorded from 212-260 nm by state-selectively probing either electronically excited S((1)D) or ground state S((3)P) photolysis products via 2 + 1 resonance-enhanced multiphoton ionization. Probing the major S((1)D) product results in a broad, unstructured action spectrum that reproduces the overall shape of the first absorption band. In contrast, spectra obtained probing S((3)P) products display prominent resonances superimposed on a broad continuum; the resonances correspond to the diffuse vibrational structure observed in the conventional absorption spectrum. The vibrational structure is assigned to four progressions, each dominated by the C-S stretch, ν1, following direct excitation to quasi-bound singlet and triplet states. The S((3)PJ) products are formed with a near-statistical population distribution over the J = 2, 1, and 0 spin-orbit levels across the wavelength range investigated. Although a minor contributor to the S atom yield near the peak of the absorption cross section, the relative yield of S((3)P) increases significantly at longer wavelengths. The experimental measurements validate recent theoretical work characterizing the electronic states responsible for the first absorption band by Schmidt and co-workers.

11.
Phys Chem Chem Phys ; 18(16): 11091-103, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27048978

RESUMO

The near-UV photodissociation dynamics of CH2I2 has been investigated using a combination of velocity-map (slice) ion imaging and ab initio calculations characterizing the excited states. Ground state I((2)P3/2) and spin-orbit excited I*((2)P1/2) atoms were probed using 2 + 1 resonance-enhanced multiphoton ionization (REMPI) or with single-photon VUV ionization. Two-color ion images were recorded at pump wavelengths of 355 nm, 266 nm and 248 nm, and one-color ion images at the REMPI wavelengths of ∼304 nm and ∼280 nm. Analysis of the ion images shows that, regardless of iodine spin-orbit state, ∼20% of the available energy is partitioned into translation E(T) at all excitation wavelengths indicating that the CH2I co-fragment is formed highly internally excited. The translational energy distributions comprise a slow, "statistical" component that peaks near zero and faster components that peak away from zero. The slow component makes an increasingly large contribution to the distribution as the excitation wavelength is decreased. The C-I bond dissociation energy of D0 = 2.155 ± 0.008 eV is obtained from the trend in the E(T) release of the faster components with increasing excitation energy. The I and I* ion images are anisotropic, indicating prompt dissociation, and are characterized by ß parameters that become increasingly positive with increasing E(T). The decrease in ß at lower translational energies can be attributed to deviation from axial recoil. MRCI calculations including spin-orbit coupling have been performed to identify the overlapping features in the absorption spectrum and characterize one-dimensional cuts through the electronically excited potential energy surfaces. The excited states are of significantly mixed singlet and triplet character. At longer wavelengths, excitation directly accesses repulsive states primarily of B1 symmetry, consistent with the observed 〈ß〉, while shorter wavelengths accesses bound states, also of B1 symmetry that are crossed by repulsive states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...