Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9245, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649692

RESUMO

Radiological imaging to examine intracranial blood vessels is critical for preoperative planning and postoperative follow-up. Automated segmentation of cerebrovascular anatomy from Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA) can provide radiologists with a more detailed and precise view of these vessels. This paper introduces a domain generalized artificial intelligence (AI) solution for volumetric monitoring of cerebrovascular structures from multi-center MRAs. Our approach utilizes a multi-task deep convolutional neural network (CNN) with a topology-aware loss function to learn voxel-wise segmentation of the cerebrovascular tree. We use Decorrelation Loss to achieve domain regularization for the encoder network and auxiliary tasks to provide additional regularization and enable the encoder to learn higher-level intermediate representations for improved performance. We compare our method to six state-of-the-art 3D vessel segmentation methods using retrospective TOF-MRA datasets from multiple private and public data sources scanned at six hospitals, with and without vascular pathologies. The proposed model achieved the best scores in all the qualitative performance measures. Furthermore, we have developed an AI-assisted Graphical User Interface (GUI) based on our research to assist radiologists in their daily work and establish a more efficient work process that saves time.


Assuntos
Angiografia por Ressonância Magnética , Redes Neurais de Computação , Fluxo de Trabalho , Humanos , Angiografia por Ressonância Magnética/métodos , Inteligência Artificial , Estudos Retrospectivos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos
2.
IEEE Trans Nanobioscience ; 23(1): 167-175, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37486852

RESUMO

Segmentation of major brain vessels is very important for the diagnosis of cerebrovascular disorders and subsequent surgical planning. Vessel segmentation is an important preprocessing step for a wide range of algorithms for the automatic diagnosis or treatment of several vascular pathologies and as such, it is valuable to have a well-performing vascular segmentation pipeline. In this article, we propose an end-to-end multiscale residual dual attention deep neural network for resilient major brain vessel segmentation. In the proposed network, the encoder and decoder blocks of the U-Net are replaced with the multi-level atrous residual blocks to enhance the learning capability by increasing the receptive field to extract the various semantic coarse- and fine-grained features. Dual attention block is incorporated in the bottleneck to perform effective multiscale information fusion to obtain detailed structure of blood vessels. The methods were evaluated on the publicly available TubeTK data set. The proposed method outperforms the state-of-the-art techniques with dice of 0.79 on the whole-brain prediction. The statistical and visual assessments indicate that proposed network is robust to outliers and maintains higher consistency in vessel continuity than the traditional U-Net and its variations.


Assuntos
Transtornos Cerebrovasculares , Humanos , Transtornos Cerebrovasculares/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Algoritmos , Artérias Cerebrais , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador
3.
Sci Rep ; 13(1): 18407, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891213

RESUMO

Mediastinal structure measurements are important for the radiologist's review of computed tomography pulmonary angiography (CTPA) examinations. In the reporting process, radiologists make measurements of diameters, volumes, and organ densities for image quality assessment and risk stratification. However, manual measurement of these features is time consuming. Here, we sought to develop a time-saving automated algorithm that can accurately detect, segment and measure mediastinal structures in routine clinical CTPA examinations. In this study, 700 CTPA examinations collected and annotated. Of these, a training set of 180 examinations were used to develop a fully automated deterministic algorithm. On the test set of 520 examinations, two radiologists validated the detection and segmentation performance quantitatively, and ground truth was annotated to validate the measurement performance. External validation was performed in 47 CTPAs from two independent datasets. The system had 86-100% detection and segmentation accuracy in the different tasks. The automatic measurements correlated well to those of the radiologist (Pearson's r 0.68-0.99). Taken together, the fully automated algorithm accurately detected, segmented, and measured mediastinal structures in routine CTPA examinations having an adequate representation of common artifacts and medical conditions.


Assuntos
Mediastino , Traqueia , Traqueia/diagnóstico por imagem , Angiografia , Algoritmos , Tomografia Computadorizada por Raios X/métodos
4.
Int J Chron Obstruct Pulmon Dis ; 18: 2321-2333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876659

RESUMO

Introduction: Resistive breathing (RB) is characterized by forceful contractions of the inspiratory muscles, mainly the diaphragm, resulting in large negative intrathoracic pressure and mechanical stress imposed on the lung. We have shown that RB induces lung injury in healthy animals. Whether RB exerts additional injurious effects when added to pulmonary or extrapulmonary lung injury is unknown. Our aim was to study the synergistic effect of RB on lipopolysaccharide (LPS)-induced lung injury. Methods: C57BL/6 mice inhaled an LPS aerosol (10mg/3mL) or received an intraperitoneal injection of LPS (10 mg/kg). Mice were then anaesthetized, the trachea was surgically exposed, and a nylon band of a specified length was sutured around the trachea, to provoke a reduction of the surface area at 50%. RB through tracheal banding was applied for 24 hours. Respiratory system mechanics were measured, BAL was performed, and lung sections were evaluated for histological features of lung injury. Results: LPS inhalation increased BAL cellularity, mainly neutrophils (p < 0.001 to ctr), total protein and IL-6 in BAL (p < 0.001 and p < 0.001, respectively) and increased the lung injury score (p = 0.001). Lung mechanics were not altered. Adding RB to inhaled LPS further increased BAL cellularity (p < 0.001 to LPS inh.), total protein (p = 0.016), lung injury score (p = 0.001) and increased TNFa levels in BAL (p = 0.011). Intraperitoneal LPS increased BAL cellularity, mainly macrophages (p < 0.001 to ctr.), total protein levels (p = 0.017), decreased static compliance (p = 0.004) and increased lung injury score (p < 0.001). Adding RB further increased histological features of lung injury (p = 0.022 to LPS ip). Conclusion: Resistive breathing exerts synergistic injurious effects when combined with inhalational LPS-induced lung injury, while the additive effect on extrapulmonary lung injury is less prominent.


Assuntos
Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Lesão Pulmonar/metabolismo , Endotoxinas/metabolismo , Lipopolissacarídeos , Líquido da Lavagem Broncoalveolar , Doença Pulmonar Obstrutiva Crônica/metabolismo , Camundongos Endogâmicos C57BL , Aerossóis e Gotículas Respiratórios , Pulmão/metabolismo
5.
Respir Med ; 211: 107222, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965591

RESUMO

Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder, characterized by panacinar emphysema mainly in the lower lobes, and predisposes to chronic obstructive pulmonary disease (COPD) at a younger age, especially in patients with concomitant cigarette smoking. Alpha-1 antitrypsin (a1-AT) is a serine protease inhibitor that mainly blocks neutrophil elastase and maintains protease/antiprotease balance in the lung and AATD is caused by mutations in the SERPINA1 gene that encodes a1-AT protein. PiZZ is the most common genotype associated with severe AATD, leading to reduced circulating levels of a1-AT. Besides its antiprotease function, a1-AT has anti-inflammatory and antioxidative effects and AATD results in defective innate immunity. Protease/antiprotease imbalance affects not only the lung parenchyma but also the small airways and recent studies have shown that AATD is associated with small airway dysfunction. Alterations in small airways structure with peripheral ventilation inhomogeneities may precede emphysema formation, providing a unique opportunity to detect early disease. The aim of the present review is to summarize the current evidence for the contribution of small airways disease in AATD-associated lung disease.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Deficiência de alfa 1-Antitripsina , Humanos , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/complicações , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/diagnóstico , Pulmão , Inibidores de Proteases , Enfisema Pulmonar/etiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-35210764

RESUMO

INTRODUCTION: TRPV4 channels are calcium channels, activated by mechanical stress, that have been implicated in the pathogenesis of pulmonary inflammation. During resistive breathing (RB), increased mechanical stress is imposed on the lung, inducing lung injury. The role of TRPV4 channels in RB-induced lung injury is unknown. MATERIALS AND METHODS: Spontaneously breathing adult male C57BL/6 mice were subjected to RB by tracheal banding. Following anaesthesia, mice were placed under a surgical microscope, the surface area of the trachea was measured and a nylon band was sutured around the trachea to reduce area to half. The specific TRPV4 inhibitor, HC-067047 (10 mg/kg ip), was administered either prior to RB and at 12 hrs following initiation of RB (preventive) or only at 12 hrs after the initiation of RB (therapeutic protocol). Lung injury was assessed at 24 hrs of RB, by measuring lung mechanics, total protein, BAL total and differential cell count, KC and IL-6 levels in BAL fluid, surfactant Protein (Sp)D in plasma and a lung injury score by histology. RESULTS: RB decreased static compliance (Cst), increased total protein in BAL (p < 0.001), total cell count due to increased number of both macrophages and neutrophils, increased KC and IL-6 in BAL (p < 0.001 and p = 0.01, respectively) and plasma SpD (p < 0.0001). Increased lung injury score was detected. Both preventive and therapeutic HC-067047 administration restored Cst and inhibited the increase in total protein, KC and IL-6 levels in BAL fluid, compared to RB. Preventive TRPV4 inhibition ameliorated the increase in BAL cellularity, while therapeutic TRPV4 inhibition exerted a partial effect. TRPV4 inhibition blunted the increase in plasma SpD (p < 0.001) after RB and the increase in lung injury score was also inhibited. CONCLUSION: TRPV4 inhibition exerts protective effects against RB-induced lung injury.


Assuntos
Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Pulmão , Lesão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/farmacologia
7.
Int J Chron Obstruct Pulmon Dis ; 15: 1679-1688, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764913

RESUMO

Introduction: Resistive breathing (RB), the pathophysiologic hallmark of chronic obstructive pulmonary disease (COPD), especially during exacerbations, is associated with significant inflammation and mechanical stress on the lung. Mechanical forces are implicated in the progression of emphysema that is a major pathologic feature of COPD. We hypothesized that resistive breathing exacerbates emphysema. Methods: C57BL/6 mice were exposed to 0.75 units of pancreatic porcine elastase intratracheally to develop emphysema. Resistive breathing was applied by suturing a nylon band around the trachea to reduce surface area to half for the last 24 or 72 hours of a 21-day time period after elastase treatment in total. Following RB (24 or 72 hours), lung mechanics were measured and bronchoalveolar lavage (BAL) was performed. Emphysema was quantified by the mean linear intercept (Lm) and the destructive index (DI) in lung tissue sections. Results: Following 21 days of intratracheal elastase exposure, Lm and DI increased in lung tissue sections [Lm (µm), control 39.09±0.76, elastase 62.05±2.19, p=0.003 and DI, ctr 30.95±2.75, elastase 73.12±1.75, p<0.001]. RB for 72 hours further increased Lm by 64% and DI by 19%, compared to elastase alone (p<0.001 and p=0.02, respectively). RB induced BAL neutrophilia in elastase-treated mice. Static compliance (Cst) increased in elastase-treated mice [Cst (mL/cmH2O), control 0.067±0.001, elastase 0.109±0.006, p<0.001], but superimposed RB decreased Cst, compared to elastase alone [Cst (mL/cmH2O), elastase+RB24h 0.090±0.004, p=0.006 to elastase, elastase+RB72h 0.090±0.005, p=0.006 to elastase]. Conclusion: Resistive breathing augments pulmonary inflammation and emphysema in an elastase-induced emphysema mouse model.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Resistência das Vias Respiratórias , Animais , Modelos Animais de Doenças , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/induzido quimicamente , Suínos
9.
Elife ; 82019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31140976

RESUMO

Lung cancer and chronic lung diseases impose major disease burdens worldwide and are caused by inhaled noxious agents including tobacco smoke. The cellular origins of environmental-induced lung tumors and of the dysfunctional airway and alveolar epithelial turnover observed with chronic lung diseases are unknown. To address this, we combined mouse models of genetic labeling and ablation of airway (club) and alveolar cells with exposure to environmental noxious and carcinogenic agents. Club cells are shown to survive KRAS mutations and to form lung tumors after tobacco carcinogen exposure. Increasing numbers of club cells are found in the alveoli with aging and after lung injury, but go undetected since they express alveolar proteins. Ablation of club cells prevents chemical lung tumors and causes alveolar destruction in adult mice. Hence club cells are important in alveolar maintenance and carcinogenesis and may be a therapeutic target against premalignancy and chronic lung disease.


Assuntos
Adenocarcinoma de Pulmão/patologia , Carcinógenos/metabolismo , Exposição Ambiental , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Animais , Proliferação de Células , Sobrevivência Celular , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Camundongos , Alvéolos Pulmonares/citologia , Mucosa Respiratória/citologia , Fumar Tabaco/efeitos adversos
10.
Am J Physiol Regul Integr Comp Physiol ; 317(1): R190-R202, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31091151

RESUMO

Proinflammatory cytokines like interleukin-1ß (IL-1ß) affect the control of breathing. Our aim is to determine the effect of the anti-inflammatory cytokine IL-10 οn the control of breathing. IL-10 knockout mice (IL-10-/-, n = 10) and wild-type mice (IL-10+/+, n = 10) were exposed to the following test gases: hyperoxic hypercapnia 7% CO2-93% O2, normoxic hypercapnia 7% CO2-21% O2, hypoxic hypercapnia 7% CO2-10% O2, and hypoxic normocapnia 3% CO2-10% O2. The ventilatory function was assessed using whole body plethysmography. Recombinant mouse IL-10 (rIL-10; 10 µg/kg) was administered intraperitoneally to wild-type mice (n = 10) 30 min before the onset of gas challenge. IL-10 was administered in neonatal medullary slices (10-30 ng/ml, n = 8). We found that IL-10-/- mice exhibited consistently increased frequency and reduced tidal volume compared with IL-10+/+ mice during room air breathing and in all test gases (by 23.62 to 33.2%, P < 0.05 and -36.23 to -41.69%, P < 0.05, respectively). In all inspired gases, the minute ventilation of IL-10-/- mice was lower than IL-10+/+ (by -15.67 to -22.74%, P < 0.05). The rapid shallow breathing index was higher in IL-10-/- mice compared with IL-10+/+ mice in all inspired gases (by 50.25 to 57.5%, P < 0.05). The intraperitoneal injection of rIL-10 caused reduction of the respiratory rate and augmentation of the tidal volume in room air and also in all inspired gases (by -12.22 to -29.53 and 32.18 to 45.11%, P < 0.05, respectively). IL-10 administration in neonatal rat (n = 8) in vitro rhythmically active medullary slice preparations did not affect either rhythmicity or peak amplitude of hypoglossal nerve discharge. In conclusion, IL-10 may induce a slower and deeper pattern of breathing.


Assuntos
Dióxido de Carbono/farmacologia , Interleucina-10/metabolismo , Oxigênio/farmacologia , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-10/genética , Interleucina-10/farmacologia , Masculino , Bulbo/efeitos dos fármacos , Bulbo/fisiologia , Camundongos , Camundongos Knockout
11.
PLoS One ; 13(11): e0207603, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30475894

RESUMO

BACKGROUND: We aimed to examine the predictive value of a novel mathematical formula based on the law of conservation of mass in calculating sodium changes in intensive care unit patients and compare its performance with previously published formulae. METHODS: 178 patients were enrolled from 01/2010 to 10/2013. Plasma and urine were collected in two consecutive 8-hour intervals and the sodium was measured. The predicted sodium concentration was calculated based on previous equations and our formula. The two 8-hour period (epoch 1 and 2) results were compared. Variability of predicted values among the measured range of serum sodium levels were provided by Bland-Altman plots with bias and precision statistics. Comparison of the results was performed with the statistical model of the Percentage Similarity. RESULTS: 47.19% patients had dysnatremias. The bias ± SD with 95% limits of agreement for sodium levels were -1.395±3.491 for epoch 1 and -1.623 ±11.1 for epoch 2 period. Bland-Altman analysis for the epoch 1 study period had the following results: -0.8079±3.447 for Adrogué-Madias, 0.56±9.687 for Barsoum-Levine, 0.1412±3.824 for EFWC and 0.294±4.789 for Kurtz-Nguyen formula. The mean similarity, SD and coefficient variation for the methods compared with the measured sodium are: 99.56%, 3.873, 3.89% epoch 1, 99.56%, 1.255, 1.26% for epoch 2, 99.77%, 1.245, 1.26% for Adrogue-Madias, 100.1%, 1.337, 1.34% for Barsoum-Levine, 100.1%, 1.704, 1.7% for Nguyen, 100.1%, 1.370, 1.37% for ECFW formula. CONCLUSIONS: The law of conservation of mass can be successfully applied for the prediction of sodium changes in critically ill patients.


Assuntos
Algoritmos , Hipernatremia/diagnóstico , Hiponatremia/diagnóstico , Sódio/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Estado Terminal , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Sódio/sangue , Sódio/urina , Adulto Jovem
12.
Inflammation ; 41(5): 1873-1887, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29974374

RESUMO

Inspiratory resistive breathing (IRB), a hallmark of obstructive airway diseases, is associated with strenuous contractions of the inspiratory muscles and increased negative intrathoracic pressures that act as an injurious stimulus to the lung. We have shown that IRB induces pulmonary inflammation in healthy animals. p38 kinase is activated in the lung under stress. We hypothesized that p38 is activated during IRB and contributes to IRB-induced pulmonary inflammation. Anesthetized, tracheostomized rats breathed spontaneously through a two-way valve. Resistance was connected to the inspiratory port to provoke a peak tidal inspiratory pressure 50% of maximum. Following 3 and 6 h of IRB, respiratory system mechanics were measured and bronchoalveolar lavage (BAL) was performed. Phosphorylated p38, TNF-α, and MIP-2α were detected in lung tissue. Lung injury was estimated histologically. SB203580 (p38 inhibitor) was administered prior to IRB (1 mg kg-1). Six hours of IRB increased phosphorylated p38 in the lung, compared with quietly breathing controls (p = 0.001). Six hours of IRB increased the numbers of macrophages and neutrophils (p = 0.01 and p = 0.005) in BAL fluid. BAL protein levels and lung elasticity increased after both 3 and 6 h IRB. TNF-α and MIP-2α increased after 6 h of IRB (p = 0.01 and p < 0.001, respectively). Increased lung injury score was detected at 6 h IRB. SB203580 administration blocked the increase of neutrophils and macrophages at 6 h IRB (p = 0.01 and p = 0.005 to 6 h IRB) but not the increase in BAL protein and elasticity. TNF-α, MIP-2α, and injury score at 6 h IRB returned to control. p38 activation contributes to IRB-induced pulmonary inflammation.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Inalação , Pneumonia/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Quimiocina CXCL2/análise , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Lesão Pulmonar , Macrófagos , Neutrófilos , Pneumonia/etiologia , Piridinas/farmacologia , Ratos , Fator de Necrose Tumoral alfa/análise , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-29445271

RESUMO

Background/hypothesis: Whole body exercise (WBE) changes lymphocyte subset percentages in peripheral blood. Resistive breathing, a hallmark of diseases of airway obstruction, is a form of exercise for the inspiratory muscles. Strenuous muscle contractions induce oxidative stress that may mediate immune alterations following exercise. We hypothesized that inspiratory resistive breathing (IRB) alters peripheral blood lymphocyte subsets and that oxidative stress mediates lymphocyte subpopulation alterations following both WBE and IRB. Patients and methods: Six healthy nonathletes performed two WBE and two IRB sessions for 45 minutes at 70% of VO2 maximum and 70% of maximum inspiratory pressure (Pimax), respectively, before and after the administration of antioxidants (vitamins E, A, and C for 75 days, allopurinol for 30 days, and N-acetylcysteine for 3 days). Blood was drawn at baseline, at the end of each session, and 2 hours into recovery. Lymphocyte subsets were determined by flow cytometry. Results: Before antioxidant supplementation at both WBE end and IRB end, the natural killer cell percentage increased, the T helper cell (CD3+ CD4+) percentage was reduced, and the CD4/CD8 ratio was depressed, a response which was abolished by antioxidants only after IRB. Furthermore, at IRB end, antioxidants promoted CD8+ CD38+ and blunted cytotoxic T-cell percentage increase. CD8+ CD45RA+ cell percentage changes were blunted after antioxidant supplementation in both WBE and IRB. Conclusion: We conclude that IRB produces (as WBE) changes in peripheral blood lymphocyte subsets and that oxidative stress is a major stimulus predominantly for IRB-induced lymphocyte subset alterations.


Assuntos
Resistência das Vias Respiratórias/efeitos dos fármacos , Antioxidantes/administração & dosagem , Exercícios Respiratórios/métodos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Exercício Físico , Pulmão/efeitos dos fármacos , Respiração/efeitos dos fármacos , Adulto , Biomarcadores/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Antígeno CD56/sangue , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citometria de Fluxo , Antígenos HLA-DR/sangue , Humanos , Imunofenotipagem/métodos , Antígenos Comuns de Leucócito/sangue , Pulmão/imunologia , Contagem de Linfócitos , Masculino , Malondialdeído/sangue , Fenótipo , Receptores de IgG/sangue
14.
Respir Res ; 18(1): 209, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29237457

RESUMO

BACKGROUND: Inspiratory resistive breathing (IRB), a hallmark of obstructive airway diseases, is associated with large negative intrathoracic pressures, due to strenuous contractions of the inspiratory muscles. IRB is shown to induce lung injury in previously healthy animals. Src is a multifunctional kinase that is activated in the lung by mechanical stress. ERK1/2 kinase is a downstream target of Src. We hypothesized that Src is activated in the lung during IRB, mediates ERK1/2 activation and IRB-induced lung injury. METHODS: Anaesthetized, tracheostomized adult rats breathed spontaneously through a 2-way non-rebreathing valve. Resistance was added to the inspiratory port to provide a peak tidal inspiratory pressure of 50% of maximum (inspiratory resistive breathing). Activation of Src and ERK1/2 in the lung was estimated during IRB. Following 6 h of IRB, respiratory system mechanics were measured by the forced oscillation technique and bronchoalveolar lavage (BAL) was performed to measure total and differential cell count and total protein levels. IL-1b and MIP-2a protein levels were measured in lung tissue samples. Wet lung weight to total body weight was measured and Evans blue dye extravasation was estimated to measure lung permeability. Lung injury was evaluated by histology. The Src inhibitor, PP-2 or the inhibitor of ERK1/2 activation, PD98059 was administrated 30 min prior to IRB. RESULTS: Src kinase was activated 30 min after the initiation of IRB. Src inhibition ameliorated the increase in BAL cellularity after 6 h IRB, but not the increase of IL-1ß and MIP-2a in the lung. The increase in BAL total protein and lung injury score were not affected. The increase in tissue elasticity was partly inhibited. Src inhibition blocked ERK1/2 activation at 3 but not at 6 h of IRB. ERK1/2 inhibition ameliorated the increase in BAL cellularity after 6 h of IRB, blocked the increase of IL-1ß and returned Evans blue extravasation and wet lung weight to control values. BAL total protein and the increase in elasticity were partially affected. ERK1/2 inhibition did not significantly change total lung injury score compared to 6 h IRB. CONCLUSIONS: Src and ERK1/2 are activated in the lung following IRB and participate in IRB-induced lung injury.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Resistência das Vias Respiratórias/fisiologia , Inalação/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Quinases da Família src/metabolismo , Lesão Pulmonar Aguda/patologia , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Líquido da Lavagem Broncoalveolar , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Feminino , Inflamação/enzimologia , Inflamação/patologia , Inalação/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ratos , Quinases da Família src/antagonistas & inibidores
15.
Int J Chron Obstruct Pulmon Dis ; 12: 2207-2220, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28814849

RESUMO

INTRODUCTION: Resistive breathing (RB), a hallmark of obstructive airway diseases, is characterized by strenuous contractions of the inspiratory muscles that impose increased mechanical stress on the lung. RB is shown to induce pulmonary inflammation in previous healthy animals. Tiotropium bromide, an anticholinergic bronchodilator, is also shown to exert anti-inflammatory effects. The effect of tiotropium on RB-induced pulmonary inflammation is unknown. METHODS: Adult rats were anesthetized, tracheostomized and breathed spontaneously through a two-way non-rebreathing valve. Resistances were connected to the inspiratory and/or expiratory port, to produce inspiratory resistive breathing (IRB) of 40% or 50% Pi/Pi,max (40% and 50% IRB), expiratory resistive breathing (ERB) of 60% Pe/Pe,max (60% ERB) or combined resistive breathing (CRB) of both 40% Pi/Pi,max and 60% Pe/Pe,max (40%/60% CRB). Tiotropium aerosol was inhaled prior to RB. After 6 h of RB, mechanical parameters of the respiratory system were measured and bronchoalveolar lavage (BAL) was performed. IL-1ß and IL-6 protein levels were measured in lung tissue. Lung injury was estimated histologically. RESULTS: In all, 40% and 50% IRB increased macrophage and neutrophil counts in BAL and raised IL-1ß and IL-6 lung levels, tissue elasticity, BAL total protein levels and lung injury score. Tiotropium attenuated BAL neutrophil number, IL-1ß, IL-6 levels and lung injury score increase at both 40% and 50% IRB. The increase in macrophage count and protein in BAL was only reversed at 40% IRB, while tissue elasticity was not affected. In all, 60% ERB raised BAL neutrophil count and total protein and reduced macrophage count. IL-1ß and IL-6 levels and lung injury score were increased. Tiotropium attenuated these alterations, except for the decrease in macrophage count and the increase in total protein level. In all, 40%/60% CRB increased macrophage and neutrophil count in BAL, IL-1ß and IL-6 levels, tissue elasticity, total protein in BAL and histological injury score. Tiotropium attenuated the aforementioned alterations. CONCLUSION: Tiotropium inhalation attenuates RB-induced pulmonary inflammation.


Assuntos
Resistência das Vias Respiratórias , Anti-Inflamatórios/administração & dosagem , Pneumopatias Obstrutivas/prevenção & controle , Lesão Pulmonar/prevenção & controle , Pulmão/efeitos dos fármacos , Antagonistas Muscarínicos/administração & dosagem , Pneumonia/prevenção & controle , Ventilação Pulmonar , Respiração Artificial/efeitos adversos , Brometo de Tiotrópio/administração & dosagem , Administração por Inalação , Aerossóis , Animais , Modelos Animais de Doenças , Feminino , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Pneumopatias Obstrutivas/etiologia , Pneumopatias Obstrutivas/metabolismo , Pneumopatias Obstrutivas/fisiopatologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/fisiopatologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/fisiopatologia , Ratos , Índice de Gravidade de Doença
16.
Int J Chron Obstruct Pulmon Dis ; 11: 2377-2384, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27713628

RESUMO

In obstructive lung diseases, airway inflammation leads to bronchospasm and thus resistive breathing, especially during exacerbations. This commentary discusses experimental evidence that resistive breathing per se (the mechanical stimulus) in the absence of underlying airway inflammation leads to lung injury and inflammation (mechanotransduction). The potential implications of resistive breathing-induced mechanotrasduction in COPD exacerbations are presented along with the available clinical evidence.


Assuntos
Mecanotransdução Celular , Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão , Respiração
17.
Artigo em Inglês | MEDLINE | ID: mdl-27499619

RESUMO

Combined resistive breathing (CRB) is the hallmark of obstructive airway disease pathophysiology. We have previously shown that severe inspiratory resistive breathing (IRB) induces acute lung injury in healthy rats. The role of expiratory resistance is unknown. The possibility of a load-dependent type of resistive breathing-induced lung injury also remains elusive. Our aim was to investigate the differential effects of IRB, expiratory resistive breathing (ERB), and CRB on healthy rat lung and establish the lowest loads required to induce injury. Anesthetized tracheostomized rats breathed through a two-way valve. Varying resistances were connected to the inspiratory, expiratory, or both ports, so that the peak inspiratory pressure (IRB) was 20%-40% or peak expiratory (ERB) was 40%-70% of maximum. CRB was assessed in inspiratory/expiratory pressures of 30%/50%, 40%/50%, and 40%/60% of maximum. Quietly breathing animals served as controls. At 6 hours, respiratory system mechanics were measured, and bronchoalveolar lavage was performed for measurement of cell and protein concentration. Lung tissue interleukin-6 and interleukin-1ß levels were estimated, and a lung injury histological score was determined. ERB produced significant, load-independent neutrophilia, without mechanical or permeability derangements. IRB 30% was the lowest inspiratory load that provoked lung injury. CRB increased tissue elasticity, bronchoalveolar lavage total cell, macrophage and neutrophil counts, protein and cytokine levels, and lung injury score in a dose-dependent manner. In conclusion, CRB load dependently deranges mechanics, increases permeability, and induces inflammation in healthy rats. ERB is a putative inflammatory stimulus for the lung.


Assuntos
Lesão Pulmonar Aguda/etiologia , Resistência das Vias Respiratórias , Expiração , Inalação , Pulmão/fisiopatologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Água Extravascular Pulmonar/metabolismo , Feminino , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Peroxidase/metabolismo , Pneumonia/etiologia , Pneumonia/fisiopatologia , Edema Pulmonar/etiologia , Edema Pulmonar/fisiopatologia , Ratos Wistar , Fatores de Tempo , Trabalho Respiratório
18.
Am J Physiol Lung Cell Mol Physiol ; 308(7): L683-92, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25595645

RESUMO

Inspiratory resistive breathing (IRB) is characterized by large negative intrathoracic pressures and was shown to induce pulmonary inflammation in previously healthy rats. Matrix metalloproteinases (MMP)-9 and -12 are induced by inflammation and mechanical stress in the lung. We hypothesized that IRB induces MMP-9 and -12 in the lung. Anesthetized, tracheostomized rats breathed spontaneously through a two-way valve, connected to an inspiratory resistance, with the tidal inspiratory tracheal pressure set at 50% of the maximum. Quietly breathing animals served as controls. After 3 and 6 h of IRB, respiratory mechanics were measured, bronchoalveolar lavage (BAL) was performed, lung injury score was estimated, and lung MMP-9 was estimated by zymography and ELISA. MMP-9 and MMP-12 immunohistochemistry was performed. Isolated normal alveolar macrophages were incubated with BAL from rats that underwent IRB. After 18 h, MMP-9 and -12 levels were measured in supernatants, and immunocytochemistry was performed. Macrophages were treated with IL-1ß, IL-6, or TNF-α, and MMP-9 in supernatants was measured. After 6 h of IRB, leukocytes in BAL increased, and IL-1ß and IL-6 levels were elevated. Elasticity and injury score were increased after 3 and 6 h of IRB. Lung MMP-9 levels increased after 6 h of IRB. MMP-9 and MMP-12 were detected in alveolar macrophages and epithelial (bronchial/alveolar) cells after 3 and 6 h of IRB. MMP-9 and MMP-12 were found in supernatants after treatment with 6 h of IRB BAL. Cytosolic immunostaining was detected after treatment with 3 and 6 h of IRB BAL. All cytokines induced MMP-9 in culture supernatants. In conclusion, IRB induces MMP-9 and -12 in the lung of previously healthy rats.


Assuntos
Dispneia/enzimologia , Pulmão/enzimologia , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Animais , Células Cultivadas , Indução Enzimática , Feminino , Macrófagos Alveolares/enzimologia , Transporte Proteico , Ratos Wistar , Respiração
19.
Exp Biol Med (Maywood) ; 238(2): 209-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23576803

RESUMO

Intratracheal administration of lipopolysaccharide (LPS) in animals is a commonly used model of acute lung injury, characterized by increased alveolar-capillary membrane permeability causing protein-rich edema, inflammation, deterioration of lung mechanical function and impaired gas exchange. Technetium-99-m-labeled diethylene-triamine pentaacetatic acid ((99m)Tc-DTPA) scintigraphy is a non-invasive technique to assess lung epithelial permeability. We hypothesize that the longer the exposure and the higher the dose of LPS the greater the derangement of the various indices of lung injury. After 3, 6 and 24 h of 5 or 40 µg LPS intratracheally administration, (99m)Tc-DTPA was instilled in the lung. Images were acquired for 90 min with a γ-camera and the radiotracer clearance was estimated. In another subgroup, the mechanical properties of the respiratory system were estimated with the forced oscillation technique and static pressure-volume curves, 4.5, 7.5 and 25.5 h post-LPS (iso-times with the end of (99m)Tc-DTPA scintigraphy). Bronchoalveolar lavage (BAL) was performed and a lung injury score was estimated by histology. Lung myeloperoxidase (MPO) activity was measured. (99m)Tc-DTPA clearance increased in all LPS challenged groups compared with control. DTPA clearance presented a U-shape time course at the lower dose, while LPS had a declining effect over time at the larger dose. At 7.5 and 25.5 h post-LPS, tissue elasticity was increased and static compliance decreased at both doses. Total protein in the BAL fluid increased at both doses only at 4.5 h Total lung injury score and MPO activity were elevated in all LPS-treated groups. There is differential time- and dose-dependency of the various indices of lung injury after intratracheally LPS instillation in rats.


Assuntos
Lipopolissacarídeos/toxicidade , Pneumonia/patologia , Sistema Respiratório/fisiopatologia , Pentetato de Tecnécio Tc 99m/farmacocinética , Animais , Líquido da Lavagem Broncoalveolar/química , Elasticidade , Histocitoquímica , Lipopolissacarídeos/administração & dosagem , Pulmão/diagnóstico por imagem , Pulmão/patologia , Taxa de Depuração Metabólica , Peroxidase/análise , Proteínas/análise , Radiografia , Cintilografia/métodos , Ratos
20.
Cancer Lett ; 312(2): 143-9, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21930342

RESUMO

Malignant mesothelioma (MM) is an aggressive tumor of serosal surfaces with increasing incidence and poor prognosis. Asbestos exposure is the main cause of MM and asbestos-induced DNA damage is critical for MM pathogenesis. The present review summarizes the implications of DNA repair systems in MM development, focusing on gene expression alterations and single nucleotide polymorphisms of genes encoding for DNA repair enzymes. The involvement of DNA repair systems in MM improves understanding of MM pathogenesis and provides novel therapeutical targets.


Assuntos
Reparo do DNA , Mesotelioma/genética , Dano ao DNA , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...