Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Clin Genet ; 105(3): 317-322, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37975235

RESUMO

Sperm flagella share an evolutionary conserved microtubule-based structure with motile cilia expressed at the surface of several cell types, such as the airways epithelial cells. As a result, male infertility can be observed as an isolated condition or a syndromic trait, illustrated by Primary Cilia Dyskinesia (PCD). We report two unrelated patients showing multiple morphological abnormalities of the sperm flagella (MMAF) and carrying distinct homozygous truncating variants in the PCD-associated gene CCDC65. We characterized one of the identified variants (c.1208del; p.Asn403Ilefs*9), which induces the near absence of CCDC65 protein in patient sperm. In Chlamydomonas, CCDC65 ortholog (DRC2, FAP250) is a component of the Nexin-Dynein Regulatory complex (N-DRC), which interconnects microtubule doublets and coordinates dynein arms activity. In sperm cells from the patient, we also show the loss of GAS8, another component of the N-DRC, supporting a structural/functional link between the two proteins. Our work indicates that, similarly to ciliary axoneme, CCDC65 is required for sperm flagellum structure. Importantly, our work provides first evidence that mutations in the PCD-associated gene CCDC65 also cause asthenozoospermia.


Assuntos
Infertilidade Masculina , Cauda do Espermatozoide , Humanos , Masculino , Cauda do Espermatozoide/metabolismo , Axonema/genética , Sementes/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Dineínas/genética , Infertilidade Masculina/genética , Glicoproteínas/genética
2.
Elife ; 122023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37934199

RESUMO

Male infertility is common and complex, presenting a wide range of heterogeneous phenotypes. Although about 50% of cases are estimated to have a genetic component, the underlying cause often remains undetermined. Here, from whole-exome sequencing on samples from 168 infertile men with asthenoteratozoospermia due to severe sperm flagellum, we identified homozygous ZMYND12 variants in four unrelated patients. In sperm cells from these individuals, immunofluorescence revealed altered localization of DNAH1, DNALI1, WDR66, and TTC29. Axonemal localization of ZMYND12 ortholog TbTAX-1 was confirmed using the Trypanosoma brucei model. RNAi knock-down of TbTAX-1 dramatically affected flagellar motility, with a phenotype similar to the sperm from men bearing homozygous ZMYND12 variants. Co-immunoprecipitation and ultrastructure expansion microscopy in T. brucei revealed TbTAX-1 to form a complex with TTC29. Comparative proteomics with samples from Trypanosoma and Ttc29 KO mice identified a third member of this complex: DNAH1. The data presented revealed that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1, which is critical for flagellum function and assembly in humans, and Trypanosoma. ZMYND12 is thus a new asthenoteratozoospermia-associated gene, bi-allelic variants of which cause severe flagellum malformations and primary male infertility.


Assuntos
Astenozoospermia , Infertilidade Masculina , Humanos , Masculino , Animais , Camundongos , Sêmen , Flagelos , Fertilidade , Proteínas de Ligação ao Cálcio , Dineínas
3.
Reprod Biomed Online ; 47(5): 103328, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742467

RESUMO

RESEARCH QUESTION: Do patients presenting with flagella ultrastructural defects as assessed by electron microscopy, and defined within three phenotypes (dysplasia of the fibrous sheath [DFS], primary flagellar dyskinesia [PFD] and non-specific flagellar abnormalities [NSFA]), have decreased chances of success in intracytoplasmic sperm injection (ICSI) or adverse obstetric and neonatal outcomes? DESIGN: Retrospective analysis of 189 ICSI cycles from 80 men with spermatozoa flagellum ultrastructural defects (DFS [n = 16]; PFD [n = 14]; NSFA [n = 50] compared with a control group (n = 97). Cycles were cumulatively analysed. All fresh and frozen embryo transfers resulting from each ICSI attempt were included. The effect of transmission electron microscopy (TEM) phenotype on the main ICSI outcomes was assessed by a multivariate logistic regression combined with a generalized linear mixed model to account for the non-independence of the observations. RESULTS: No predictive value of TEM phenotype was found on the main outcomes of ICSI, namely fertilization rates, pregnancy and delivery rates, and cumulative pregnancy and delivery rates. Cumulative pregnancy rates ranged from 29.0-43.3% in the different TEM phenotype subgroups compared with 36.8% in the control group. Cumulative live birth rates ranged from 24.6-36.7% compared with 31.4% in the control group. No increase was found in miscarriages, preterm births, low birth weights or birth abnormalities. CONCLUSIONS: Data on the cumulative chances of success in ICSI of patients with ultrastructural flagellar defects, a rare cause of male infertility often associated with an underlying genetic cause, are reassuring, as are obstetrical and neonatal outcomes in this population.


Assuntos
Astenozoospermia , Infertilidade Masculina , Gravidez , Recém-Nascido , Feminino , Humanos , Masculino , Injeções de Esperma Intracitoplásmicas/efeitos adversos , Estudos Retrospectivos , Sêmen , Infertilidade Masculina/terapia , Infertilidade Masculina/etiologia , Taxa de Gravidez , Microscopia Eletrônica de Transmissão , Fertilização in vitro
4.
iScience ; 26(8): 107354, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37520705

RESUMO

Sperm fertilization ability mainly relies on proper sperm progression through the female genital tract and capacitation, which involves phosphorylation signaling pathways triggered by calcium and bicarbonate. We performed exome sequencing of an infertile asthenozoospermic patient and identified truncating variants in MAP7D3, encoding a microtubule-associated protein, and IQCH, encoding a protein of unknown function with enzymatic and signaling features. We demonstrate the deleterious impact of both variants on sperm transcripts and proteins from the patient. We show that, in vitro, patient spermatozoa could not induce the phosphorylation cascades associated with capacitation. We also provide evidence for IQCH association with calmodulin, a well-established calcium-binding protein that regulates the calmodulin kinase. Notably, we describe IQCH spatial distribution around the sperm axoneme, supporting its function within flagella. Overall, our work highlights the cumulative pathological impact of gene mutations and identifies IQCH as a key protein required for sperm motility and capacitation.

5.
Elife ; 122023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083624

RESUMO

The manchette is a transient and unique structure present in elongating spermatids and required for proper differentiation of the germ cells during spermatogenesis. Previous work indicated that the MEIG1/PACRG complex locates in the manchette and is involved in the transport of cargos, such as SPAG16L, to build the sperm flagellum. Here, using co-immunoprecipitation and pull-down approaches in various cell systems, we established that DNALI1, an axonemal component originally cloned from Chlamydomonas reinhardtii, recruits and stabilizes PACRG and we confirm in vivo, the co-localization of DNALI1 and PACRG in the manchette by immunofluorescence of elongating murine spermatids. We next generated mice with a specific deficiency of DNALI1 in male germ cells, and observed a dramatic reduction of the sperm cells, which results in male infertility. In addition, we observed that the majority of the sperm cells exhibited abnormal morphology including misshapen heads, bent tails, enlarged midpiece, discontinuous accessory structure, emphasizing the importance of DNALI1 in sperm differentiation. Examination of testis histology confirmed impaired spermiogenesis in the mutant mice. Importantly, while testicular levels of MEIG1, PACRG, and SPAG16L proteins were unchanged in the Dnali1 mutant mice, their localization within the manchette was greatly affected, indicating that DNALI1 is required for the formation of the MEIG1/PACRG complex within the manchette. Interestingly, in contrast to MEIG1 and PACRG-deficient mice, the DNALI1-deficient mice also showed impaired sperm spermiation/individualization, suggesting additional functions beyond its involvement in the manchette structure. Overall, our work identifies DNALI1 as a protein required for sperm development.


Assuntos
Sementes , Cauda do Espermatozoide , Masculino , Camundongos , Animais , Espermatogênese , Proteínas/metabolismo , Espermátides/metabolismo , Testículo/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ciclo Celular/metabolismo
6.
BMC Public Health ; 22(1): 2327, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510195

RESUMO

BACKGROUND: One out of ten deaths of children under five are attributable to indoor air pollution. And Acute Respiratory Illness (ARI) is among the direct causes. OBJECTIVE: This study showed the possibilities of characterizing indoor air pollution in West African Economic and Monetary Union (WAEMU) area and it also made it possible to estimate its impact on the occurrence of ARI in children under five. METHODS: It has been a secondary analysis based on Demographic and Health Surveys (DHSs) from WAEMU countries' data.. "Household level of air pollution" is the created composite variable, from questions on the degradation factors of indoor air quality (domestic combustion processes) which served to characterize indoor air pollution and to measure its impact by a logistic regression. RESULTS: Burkina Faso stands out with a greater number of households with a high level of pollution (63.7%) followed by Benin (43.7%) then Togo (43.0%). The main exposure factor "Household level of air pollution" was associated with ARI symptoms (Togo: prevalence = 51.3%; chi-squared test's p-value < 0.001). Exposure to high level of pollution constitutes a risk (AOR [95 CI]), even though it is not significant ( Ivory Coast: 1.29 [0.72-2.30], Senegal: 1.39 [0.94-2.05] and Togo: 1.15 [0.67-1.95]) and this could be explained by the high infectious etiology of the ARI.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar , Infecções Respiratórias , Criança , Humanos , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/etiologia , Fatores de Risco , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Prevalência , Burkina Faso , Culinária
7.
J Water Health ; 20(11): 1654-1667, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36448615

RESUMO

Diarrheal diseases are the second leading cause of child mortality worldwide, occurring in about one in every nine child deaths, and were associated with water, sanitation, and hygiene (WASH) access. In this study, we provided an overview of WASH indicators' evolution from 2000 to 2017 and their impact on the occurrence of diarrhea in children under 5 years old in Senegal. It was a retrospective cross-sectional study, in which we did a secondary analysis of data from the Joint Monitoring Program (JMP) for water supply and sanitation and from the Senegal Demographic and Health Survey 2018. Our results showed that access to safely managed services increased by 18.1 and 19.1%, respectively, for water and sanitation. The prevalence of diarrhea estimated at 18.16% was associated with straining water through a cloth (adjusted odds ratio (AOR) [95% confidence interval (CI)]: 1.21 [1.00-1.45]) and getting water supplies from a source not located in a dwelling (AOR [95% CI]: 1.59 [1.21-2.09]). The prevalence of diarrhea among children under 5 years old was still relatively high in Senegal and was significantly associated with a lack of WASH access. Although the latter continues to increase, additional efforts to make water safer to drink will significantly reduce the occurrence of diarrheal diseases among children under 5 years old in Senegal.


Assuntos
Higiene , Saneamento , Criança , Humanos , Pré-Escolar , Estudos Transversais , Estudos Retrospectivos , Senegal/epidemiologia , Diarreia/epidemiologia
8.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35409285

RESUMO

In mammals, sperm fertilization potential relies on efficient progression within the female genital tract to reach and fertilize the oocyte. This fundamental property is supported by the flagellum, an evolutionarily conserved organelle that provides the mechanical force for sperm propulsion and motility. Importantly several functional maturation events that occur during the journey of the sperm cells through the genital tracts are necessary for the activation of flagellar beating and the acquisition of fertilization potential. Ion transporters and channels located at the surface of the sperm cells have been demonstrated to be involved in these processes, in particular, through the activation of downstream signaling pathways and the promotion of novel biochemical and electrophysiological properties in the sperm cells. We performed a systematic literature review to describe the currently known genetic alterations in humans that affect sperm ion transporters and channels and result in asthenozoospermia, a pathophysiological condition defined by reduced or absent sperm motility and observed in nearly 80% of infertile men. We also present the physiological relevance and functional mechanisms of additional ion channels identified in the mouse. Finally, considering the state-of-the art, we discuss future perspectives in terms of therapeutics of asthenozoospermia and male contraception.


Assuntos
Astenozoospermia , Animais , Astenozoospermia/genética , Astenozoospermia/metabolismo , Feminino , Humanos , Canais Iônicos/metabolismo , Masculino , Mamíferos , Camundongos , Modelos Animais , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo
9.
Hum Reprod ; 36(11): 2848-2860, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34529793

RESUMO

STUDY QUESTION: Are ICSI outcomes impaired in cases of severe asthenozoospermia with multiple morphological abnormalities of the flagellum (MMAF phenotype)? SUMMARY ANSWER: Despite occasional technical difficulties, ICSI outcomes for couples with MMAF do not differ from those of other couples requiring ICSI, irrespective of the genetic defect. WHAT IS KNOWN ALREADY: Severe asthenozoospermia, especially when associated with the MMAF phenotype, results in male infertility. Recent findings have confirmed that a genetic aetiology is frequently responsible for this phenotype. In such situations, pregnancies can be achieved using ICSI. However, few studies to date have provided detailed analyses regarding the flagellar ultrastructural defects underlying this phenotype, its genetic aetiologies, and the results of ICSI in such cases of male infertility. STUDY DESIGN, SIZE, DURATION: We performed a retrospective study of 25 infertile men exhibiting severe asthenozoospermia associated with the MMAF phenotype identified through standard semen analysis. They were recruited at an academic centre for assisted reproduction in Paris (France) between 2009 and 2017. Transmission electron microscopy (TEM) and whole exome sequencing (WES) were performed in order to determine the sperm ultrastructural phenotype and the causal mutations, respectively. Finally 20 couples with MMAF were treated by assisted reproductive technologies based on ICSI. PARTICIPANTS/MATERIALS, SETTING, METHODS: Patients with MMAF were recruited based on reduced sperm progressive motility and increased frequencies of absent, short, coiled or irregular flagella compared with those in sperm from fertile control men. A quantitative analysis of the several ultrastructural defects was performed for the MMAF patients and for fertile men. The ICSI results obtained for 20 couples with MMAF were compared to those of 378 men with oligoasthenoteratozoospermia but no MMAF as an ICSI control group. MAIN RESULTS AND THE ROLE OF CHANCE: TEM analysis and categorisation of the flagellar anomalies found in these patients provided important information regarding the structural defects underlying asthenozoospermia and sperm tail abnormalities. In particular, the absence of the central pair of axonemal microtubules was the predominant anomaly observed more frequently than in control sperm (P < 0.01). Exome sequencing, performed for 24 of the 25 patients, identified homozygous or compound heterozygous pathogenic mutations in CFAP43, CFAP44, CFAP69, DNAH1, DNAH8, AK7, TTC29 and MAATS1 in 13 patients (54.2%) (11 affecting MMAF genes and 2 affecting primary ciliary dyskinesia (PCD)-associated genes). A total of 40 ICSI cycles were undertaken for 20 MMAF couples, including 13 cycles (for 5 couples) where a hypo-osmotic swelling (HOS) test was required due to absolute asthenozoospermia. The fertilisation rate was not statistically different between the MMAF (65.7%) and the non-MMAF (66.0%) couples and it did not differ according to the genotype or the flagellar phenotype of the subjects or use of the HOS test. The clinical pregnancy rate per embryo transfer did not differ significantly between the MMAF (23.3%) and the non-MMAF (37.1%) groups. To date, 7 of the 20 MMAF couples have achieved a live birth from the ICSI attempts, with 11 babies born without any birth defects. LIMITATIONS, REASONS FOR CAUTION: The ICSI procedure outcomes were assessed retrospectively on a small number of affected subjects and should be confirmed on a larger cohort. Moreover, TEM analysis could not be performed for all patients due to low sperm concentrations, and WES results are not yet available for all of the included men. WIDER IMPLICATIONS OF THE FINDINGS: An early and extensive phenotypic and genetic investigation should be considered for all men requiring ICSI for severe asthenozoospermia. Although our study did not reveal any adverse ICSI outcomes associated with MMAF, we cannot rule out that some rare genetic causes could result in low fertilisation or pregnancy rates. STUDY FUNDING/COMPETING INTEREST(S): No external funding was used for this study and there are no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Astenozoospermia , Infertilidade Masculina , Astenozoospermia/genética , Feminino , Flagelos , Humanos , Infertilidade Masculina/genética , Masculino , Fenótipo , Gravidez , Estudos Retrospectivos , Injeções de Esperma Intracitoplásmicas , Cauda do Espermatozoide , Espermatozoides
10.
Hum Genet ; 140(9): 1367-1377, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34255152

RESUMO

Spermatozoa are polarized cells with a head and a flagellum joined together by the connecting piece. Flagellum integrity is critical for normal sperm function, and flagellum defects consistently lead to male infertility. Multiple morphological abnormalities of the flagella (MMAF) is a distinct sperm phenotype consistently leading to male infertility due to a reduced or absent sperm motility associated with severe morphological and ultrastructural flagellum defects. Despite numerous genes recently described to be recurrently associated with MMAF, more than half of the cases analyzed remain unresolved, suggesting that many yet uncharacterized gene defects account for this phenotype. By performing a retrospective exome analysis of the unsolved cases from our initial cohort of 167 infertile men with a MMAF phenotype, we identified one individual carrying a homozygous frameshift variant in CFAP206, a gene encoding a microtubule-docking adapter for radial spoke and inner dynein arm. Immunostaining experiments in the patient's sperm cells demonstrated the absence of WDR66 and RSPH1 proteins suggesting severe radial spokes and calmodulin and spoke-associated complex defects. Using the CRISPR-Cas9 technique, we generated homozygous Cfap206 knockout (KO) mice which presented with male infertility due to functional, structural and ultrastructural sperm flagellum defects associated with a very low rate of embryo development using ICSI. Overall, we showed that CFAP206 is essential for normal sperm flagellum structure and function in human and mouse and that bi-allelic mutations in CFAP206 cause male infertility in man and mouse by inducing morphological and functional defects of the sperm flagellum that may also cause ICSI failures.


Assuntos
Proteínas do Citoesqueleto , Mutação da Fase de Leitura , Homozigoto , Infertilidade Masculina , Cauda do Espermatozoide/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos
12.
Toxicol Rep ; 8: 386-394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717991

RESUMO

The aim of this study was to assess the integrity and kidney overall functional capacity of subjects exposed to landfill emissions. Urine and blood levels of Pb and Cd, and several of the newly biomarkers of nephrotoxicity (Kim Injury Molecule 1 (KIM-1), alpha-1 Microglobulin (α1 M), beta-2 Microglobulin (ß2 M), Cystatin-C (Cyst C), Clusterin, alpha-glutathione S-transferase (GSTα), pi-glutathione S-transferase (GSTπ), Tissue Inhibitor of Metalloproteinase-1 (TIMP1), Calbindin, Neutrophil Gelatinase-Associated Lipocalin (NGAL), Osteopontin (OPN), (Retinol Binding Protein(RBP), Liver-type Fatty Acid-Binding Protein (FABP-1), Trefoil Factor 3 (TFF3), Collagen VI) were measured in order to assess glomerular and tubule damage in adults living near a landfill. Our results indicate glomerular dysfunction in exposed subjects, and supported evidence of necrosis of proximal and distal tubule epithelial cells as specific biomarkers began to appear in the urine. Positive correlation by Pearson test were obtained between : blood Pb and B-OPN, B-Cyst C, Calbindin, U-KIM-1, TIMP1, U-OPN, and U-Clusterin; and also, between urinary Cd and TIMP1, B-Clusterin, U-OPN, FABP-1, Albumin, and U-Clusterin. The relation between biomarkers of Cd/Pb exposure and early effect biomarkers in this study clearly predicts the future risk of severe kidney injury in subjects living close to the landfill.

13.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671757

RESUMO

Acephalic spermatozoa syndrome (ASS) is a rare but extremely severe type of teratozoospermia, defined by the presence of a majority of headless flagella and a minority of tail-less sperm heads in the ejaculate. Like the other severe monomorphic teratozoospermias, ASS has a strong genetic basis and is most often caused by bi-allelic variants in SUN5 (Sad1 and UNC84 domain-containing 5). Using whole exome sequencing (WES), we investigated a cohort of nine infertile subjects displaying ASS. These subjects were recruited in three centers located in France and Tunisia, but all originated from North Africa. Sperm from subjects carrying candidate genetic variants were subjected to immunofluorescence analysis and transmission electron microscopy. Moreover, fluorescent in situ hybridization (FISH) was performed on sperm nuclei to assess their chromosomal content. Variant filtering permitted us to identify the same SUN5 homozygous frameshift variant (c.211+1_211+2dup) in 7/9 individuals (78%). SUN5 encodes a protein localized on the posterior part of the nuclear envelope that is necessary for the attachment of the tail to the sperm head. Immunofluorescence assays performed on sperm cells from three mutated subjects revealed a total absence of SUN5, thus demonstrating the deleterious impact of the identified variant on protein expression. Transmission electron microscopy showed a conserved flagellar structure and a slightly decondensed chromatin. FISH did not highlight a higher rate of chromosome aneuploidy in spermatozoa from SUN5 patients compared to controls, indicating that intra-cytoplasmic sperm injection (ICSI) can be proposed for patients carrying the c.211+1_211+2dup variant. These results suggest that the identified SUN5 variant is the main cause of ASS in the North African population. Consequently, a simple and inexpensive genotyping of the 211+1_211+2dup variant could be beneficial for affected men of North African origin before resorting to more exhaustive genetic analyses.


Assuntos
Proteínas de Membrana/genética , Espermatozoides/ultraestrutura , Teratozoospermia/genética , Adulto , África do Norte , Aneuploidia , Estudos de Casos e Controles , Variação Genética , Haplótipos , Homozigoto , Humanos , Hibridização in Situ Fluorescente , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Sequenciamento do Exoma
14.
Hum Genet ; 140(7): 1031-1043, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33689014

RESUMO

Cilia and flagella are formed around an evolutionary conserved microtubule-based axoneme and are required for fluid and mucus clearance, tissue homeostasis, cell differentiation and movement. The formation and maintenance of cilia and flagella require bidirectional transit of proteins along the axonemal microtubules, a process called intraflagellar transport (IFT). In humans, IFT defects contribute to a large group of systemic diseases, called ciliopathies, which often display overlapping phenotypes. By performing exome sequencing of a cohort of 167 non-syndromic infertile men displaying multiple morphological abnormalities of the sperm flagellum (MMAF) we identified two unrelated patients carrying a homozygous missense variant adjacent to a splice donor consensus site of IFT74 (c.256G > A;p.Gly86Ser). IFT74 encodes for a core component of the IFT machinery that is essential for the anterograde transport of tubulin. We demonstrate that this missense variant affects IFT74 mRNA splicing and induces the production of at least two distinct mutant proteins with abnormal subcellular localization along the sperm flagellum. Importantly, while IFT74 deficiency was previously implicated in two cases of Bardet-Biedl syndrome, a pleiotropic ciliopathy with variable expressivity, our data indicate that this missense mutation only results in primary male infertility due to MMAF, with no other clinical features. Taken together, our data indicate that the nature of the mutation adds a level of complexity to the clinical manifestations of ciliary dysfunction, thus contributing to the expanding phenotypical spectrum of ciliopathies.


Assuntos
Astenozoospermia/genética , Síndrome de Bardet-Biedl/genética , Proteínas do Citoesqueleto/genética , Flagelos/genética , Infertilidade Masculina/genética , Mutação de Sentido Incorreto/genética , Tubulina (Proteína)/genética , Animais , Axonema/genética , Cílios/genética , Homozigoto , Humanos , Masculino , Transporte Proteico/genética , Sítios de Splice de RNA/genética , Cauda do Espermatozoide/fisiologia , Sequenciamento do Exoma/métodos
15.
Clin Genet ; 99(5): 684-693, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33462806

RESUMO

Asthenozoospermia, defined by the absence or reduction of sperm motility, constitutes the most frequent cause of human male infertility. This pathological condition is caused by morphological and/or functional defects of the sperm flagellum, which preclude proper sperm progression. While in the last decade many causal genes were identified for asthenozoospermia associated with severe sperm flagellar defects, the causes of purely functional asthenozoospermia are still poorly defined. We describe here the case of an infertile man, displaying asthenozoospermia without major morphological flagellar anomalies and carrying a homozygous splicing mutation in SLC9C1 (sNHE), which we identified by whole-exome sequencing. SLC9C1 encodes a sperm-specific sodium/proton exchanger, which in mouse regulates pH homeostasis and interacts with the soluble adenylyl cyclase (sAC), a key regulator of the signalling pathways involved in sperm motility and capacitation. We demonstrate by means of RT-PCR, immunodetection and immunofluorescence assays on patient's semen samples that the homozygous splicing mutation (c.2748 + 2 T > C) leads to in-frame exon skipping resulting in a deletion in the cyclic nucleotide-binding domain of the protein. Our work shows that in human, similar to mouse, SLC9C1 is required for sperm motility. Overall, we establish a homozygous truncating mutation in SLC9C1 as a novel cause of human asthenozoospermia and infertility.


Assuntos
Astenozoospermia/genética , Fertilidade/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia , Motilidade dos Espermatozoides/fisiologia , Adulto , Homozigoto , Humanos , Infertilidade/genética , Masculino , Linhagem , Splicing de RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Trocadores de Sódio-Hidrogênio/genética , Cauda do Espermatozoide/patologia , Sequenciamento do Exoma
16.
Am J Hum Genet ; 108(2): 309-323, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33472045

RESUMO

Asthenoteratozoospermia characterized by multiple morphological abnormalities of the flagella (MMAF) has been identified as a sub-type of male infertility. Recent progress has identified several MMAF-associated genes with an autosomal recessive inheritance in human affected individuals, but the etiology in approximately 40% of affected individuals remains unknown. Here, we conducted whole-exome sequencing (WES) and identified hemizygous missense variants in the X-linked CFAP47 in three unrelated Chinese individuals with MMAF. These three CFAP47 variants were absent in human control population genome databases and were predicted to be deleterious by multiple bioinformatic tools. CFAP47 encodes a cilia- and flagella-associated protein that is highly expressed in testis. Immunoblotting and immunofluorescence assays revealed obviously reduced levels of CFAP47 in spermatozoa from all three men harboring deleterious missense variants of CFAP47. Furthermore, WES data from an additional cohort of severe asthenoteratozoospermic men originating from Australia permitted the identification of a hemizygous Xp21.1 deletion removing the entire CFAP47 gene. All men harboring hemizygous CFAP47 variants displayed typical MMAF phenotypes. We also generated a Cfap47-mutated mouse model, the adult males of which were sterile and presented with reduced sperm motility and abnormal flagellar morphology and movement. However, fertility could be rescued by the use of intra-cytoplasmic sperm injections (ICSIs). Altogether, our experimental observations in humans and mice demonstrate that hemizygous mutations in CFAP47 can induce X-linked MMAF and asthenoteratozoospermia, for which good ICSI prognosis is suggested. These findings will provide important guidance for genetic counseling and assisted reproduction treatments.


Assuntos
Astenozoospermia/genética , Infertilidade Masculina/genética , Animais , Astenozoospermia/patologia , Astenozoospermia/fisiopatologia , Estudos de Coortes , Feminino , Deleção de Genes , Genes Ligados ao Cromossomo X , Hemizigoto , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Mutação , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Injeções de Esperma Intracitoplásmicas , Motilidade dos Espermatozoides , Cauda do Espermatozoide/ultraestrutura , Espermatozoides/patologia , Espermatozoides/fisiologia , Espermatozoides/ultraestrutura , Sequenciamento do Exoma
17.
Science ; 371(6525)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33414192

RESUMO

Posttranslational modifications of the microtubule cytoskeleton have emerged as key regulators of cellular functions, and their perturbations have been linked to a growing number of human pathologies. Tubulin glycylation modifies microtubules specifically in cilia and flagella, but its functional and mechanistic roles remain unclear. In this study, we generated a mouse model entirely lacking tubulin glycylation. Male mice were subfertile owing to aberrant beat patterns of their sperm flagella, which impeded the straight swimming of sperm cells. Using cryo-electron tomography, we showed that lack of glycylation caused abnormal conformations of the dynein arms within sperm axonemes, providing the structural basis for the observed dysfunction. Our findings reveal the importance of microtubule glycylation for controlled flagellar beating, directional sperm swimming, and male fertility.


Assuntos
Dineínas do Axonema/metabolismo , Fertilidade/genética , Infertilidade Masculina/enzimologia , Processamento de Proteína Pós-Traducional , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/enzimologia , Tubulina (Proteína)/metabolismo , Animais , Dineínas do Axonema/química , Cílios/enzimologia , Microscopia Crioeletrônica , Modelos Animais de Doenças , Tomografia com Microscopia Eletrônica , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Knockout , Tubulina (Proteína)/química
18.
Hum Genet ; 140(1): 21-42, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31950240

RESUMO

Spermatozoa contain highly specialized structural features reflecting unique functions required for fertilization. Among them, the flagellum is a sperm-specific organelle required to generate the motility, which is essential to reach the egg. The flagellum integrity is, therefore, critical for normal sperm function and flagellum defects consistently lead to male infertility due to reduced or absent sperm motility defined as asthenozoospermia. Multiple morphological abnormalities of the flagella (MMAF), also called short tails, is among the most severe forms of sperm flagellum defects responsible for male infertility and is characterized by the presence in the ejaculate of spermatozoa being short, coiled, absent and of irregular caliber. Recent studies have demonstrated that MMAF is genetically heterogeneous which is consistent with the large number of proteins (over one thousand) localized in the human sperm flagella. In the past 5 years, genomic investigation of the MMAF phenotype allowed the identification of 18 genes whose mutations induce MMAF and infertility. Here we will review information about those genes including their expression pattern, the features of the encoded proteins together with their localization within the different flagellar protein complexes (axonemal or peri-axonemal) and their potential functions. We will categorize the identified MMAF genes following the protein complexes, functions or biological processes they may be associated with, based on the current knowledge in the field.


Assuntos
Cauda do Espermatozoide/metabolismo , Espermatozoides/anormalidades , Animais , Axonema/genética , Flagelos/genética , Humanos , Infertilidade Masculina/genética , Masculino , Mutação/genética , Fenótipo , Motilidade dos Espermatozoides/genética
19.
Best Pract Res Clin Endocrinol Metab ; 34(6): 101473, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33183966

RESUMO

Spermatozoa are polarized cells with a head and a flagellum joined by the connecting piece. Head integrity is critical for normal sperm function, and head defects consistently lead to male infertility. Abnormalities of the sperm head are among the most severe and characteristic sperm defects. Patients presenting with a monomorphic head sperm defects such as globozoospermia or marcrozoospermia were analyzed permitting to identify several key genes for spermatogenesis such as AURKC and DPY19L2. The study of patients with other specific sperm head defects such as acephalic spermatozoa have also enabled the identification of new infertility genes such as SUN5. Here, we review the genetic causes leading to morphological defects of sperm head. Advances in the genetics of male infertility are necessary to improve the management of infertility and will pave the road towards future strategies of treatments, especially for patients with the most severe phenotype as sperm head defects.


Assuntos
Cabeça do Espermatozoide/patologia , Espermatozoides/anormalidades , Teratozoospermia/genética , Aurora Quinase C/genética , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Masculino , Proteínas de Membrana/genética , Cabeça do Espermatozoide/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Espermatozoides/patologia , Teratozoospermia/patologia
20.
Am J Hum Genet ; 107(2): 330-341, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32619401

RESUMO

Sperm malformation is a direct factor for male infertility. Multiple morphological abnormalities of the flagella (MMAF), a severe form of asthenoteratozoospermia, are characterized by immotile spermatozoa with malformed and/or absent flagella in the ejaculate. Previous studies indicated genetic heterogeneity in MMAF. To further define genetic factors underlying MMAF, we performed whole-exome sequencing in a cohort of 90 Chinese MMAF-affected men. Two cases (2.2%) were identified as carrying bi-allelic missense DNAH8 variants, variants which were either absent or rare in the control human population and were predicted to be deleterious by multiple bioinformatic tools. Re-analysis of exome data from a second cohort of 167 MMAF-affected men from France, Iran, and North Africa permitted the identification of an additional male carrying a DNAH8 homozygous frameshift variant. DNAH8 encodes a dynein axonemal heavy-chain component that is expressed preferentially in the testis. Hematoxylin-eosin staining and electron microscopy analyses of the spermatozoa from men harboring bi-allelic DNAH8 variants showed a highly aberrant morphology and ultrastructure of the sperm flagella. Immunofluorescence assays performed on the spermatozoa from men harboring bi-allelic DNAH8 variants revealed the absent or markedly reduced staining of DNAH8 and its associated protein DNAH17. Dnah8-knockout male mice also presented typical MMAF phenotypes and sterility. Interestingly, intracytoplasmic sperm injections using the spermatozoa from Dnah8-knockout male mice resulted in good pregnancy outcomes. Collectively, our experimental observations from humans and mice demonstrate that DNAH8 is essential for sperm flagellar formation and that bi-allelic deleterious DNAH8 variants lead to male infertility with MMAF.


Assuntos
Anormalidades Múltiplas/genética , Dineínas do Axonema/genética , Flagelos/genética , Variação Genética/genética , Infertilidade Masculina/genética , Cauda do Espermatozoide/patologia , Alelos , Animais , Estudos de Coortes , Exoma/genética , Feminino , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout , Espermatozoides/anormalidades , Testículo/anormalidades , Sequenciamento do Exoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...