Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Naturwissenschaften ; 104(5-6): 47, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28534252

RESUMO

Oxygen isotope compositions of bone phosphate (δ18Op) were measured in broiler chickens reared in 21 farms worldwide characterized by contrasted latitudes and local climates. These sedentary birds were raised during an approximately 3 to 4-month period, and local precipitation was the ultimate source of their drinking water. This sampling strategy allowed the relationship to be determined between the bone phosphate δ18Op values (from 9.8 to 22.5‰ V-SMOW) and the local rainfall δ18Ow values estimated from nearby IAEA/WMO stations (from -16.0 to -1.0‰ V-SMOW). Linear least square fitting of data provided the following isotopic fractionation equation: δ18Ow = 1.119 (±0.040) δ18Op - 24.222 (±0.644); R 2 = 0.98. The δ18Op-δ18Ow couples of five extant mallard ducks, a common buzzard, a European herring gull, a common ostrich, and a greater rhea fall within the predicted range of the equation, indicating that the relationship established for extant chickens can also be applied to birds of various ecologies and body masses. Applied to published oxygen isotope compositions of Miocene and Pliocene penguins from Peru, this new equation computes estimates of local seawater similar to those previously calculated. Applied to the basal bird Confuciusornis from the Early Cretaceous of Northeastern China, our equation gives a slightly higher δ18Ow value compared to the previously estimated one, possibly as a result of lower body temperature. These data indicate that caution should be exercised when the relationship estimated for modern birds is applied to their basal counterparts that likely had a metabolism intermediate between that of their theropod dinosaur ancestors and that of advanced ornithurines.


Assuntos
Aves/fisiologia , Osso e Ossos/química , Isótopos de Oxigênio/análise , Fosfatos/análise , Animais , Clima , Fósseis , Geografia , Chuva/química
2.
Isotopes Environ Health Stud ; 53(3): 223-242, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28276733

RESUMO

The oxygen isotope compositions of bones (n = 11) and teeth (n = 20) from 12 Sudanese individuals buried on Sai Island (Nubia) were analysed to investigate the registration of the evolution of the Nile environment from 3700 to 500 years BP and the potential effects of ontogeny on the oxygen isotope ratios. The isotopic compositions were converted into the composition of drinking water, ultimately originating from the Nile. δ18O values decrease during ontogeny; this is mainly related to breastfeeding and physiology. Those of neonates present very large variations. Neonates have a very high bone turnover and are thus able to record seasonal δ18O variations of the Nile waters. These variations followed a pattern very similar to the present one. Nile δ18O values increased from 1.4 to 4.4 ‰ (Vienna Standard Mean Ocean Water) from the Classic Kerma (∼3500 BP) through the Christian period (∼1000 BP), traducing a progressive drying of Northeast Africa.


Assuntos
Osso e Ossos/química , Mudança Climática/história , Estações do Ano , Dente/química , Adulto , Apatitas/análise , Pré-Escolar , Monitoramento Ambiental , Feto/química , História Antiga , História Medieval , Humanos , Lactente , Recém-Nascido , Isótopos de Oxigênio/análise , Fosfatos/análise , Rios/química , Sudão , Movimentos da Água , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA