Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(2)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672139

RESUMO

The brief opening mode of the mitochondrial permeability transition pore (mPTP) serves as a calcium (Ca2+) release valve to prevent mitochondrial Ca2+ (mCa2+) overload. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced arrhythmic syndrome due to mutations in the Ca2+ release channel complex of ryanodine receptor 2 (RyR2). We hypothesize that inhibiting the mPTP opening in CPVT exacerbates the disease phenotype. By crossbreeding a CPVT model of CASQ2 knockout (KO) with a mouse missing CypD, an activator of mPTP, a double KO model (DKO) was generated. Echocardiography, cardiac histology, and live-cell imaging were employed to assess the severity of cardiac pathology. Western blot and RNAseq were performed to evaluate the contribution of various signaling pathways. Although exacerbated arrhythmias were reported, the DKO model did not exhibit pathological remodeling. Myocyte Ca2+ handling was similar to that of the CASQ2 KO mouse at a low pacing frequency. However, increased ROS production, activation of the CaMKII pathway, and hyperphosphorylation of RyR2 were detected in DKO. Transcriptome analysis identified altered gene expression profiles associated with electrical instability in DKO. Our study provides evidence that genetic inhibition of mPTP exacerbates RyR2 dysfunction in CPVT by increasing activation of the CaMKII pathway and subsequent hyperphosphorylation of RyR2.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular , Camundongos , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Calsequestrina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Miócitos Cardíacos/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/patologia , Camundongos Knockout
2.
Cardiovasc Res ; 118(13): 2819-2832, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34677619

RESUMO

AIMS: Diastolic Ca release (DCR) from sarcoplasmic reticulum (SR) Ca release channel ryanodine receptor (RyR2) has been linked to multiple cardiac pathologies, but its exact role in shaping divergent cardiac pathologies remains unclear. We hypothesize that the SR-mitochondria interplay contributes to disease phenotypes by shaping Ca signalling. METHODS AND RESULTS: A genetic model of catecholaminergic polymorphic ventricular tachycardia (CPVT2 model of CASQ2 knockout) and a pre-diabetic cardiomyopathy model of fructose-fed mice (FFD), both marked by DCR, are employed in this study. Mitochondria Ca (mCa) is modulated by pharmacologically targeting mitochondria Ca uniporter (MCU) or permeability transition pore (mPTP), mCa uptake, and extrusion mechanisms, respectively. An MCU activator abolished Ca waves in CPVT2 but exacerbated waves in FFD cells. Mechanistically this is ascribed to mitochondria's function as a Ca buffer or source of reactive oxygen species (mtROS) to exacerbate RyR2 functionality, respectively. Enhancing mCa uptake reduced and elevated mtROS production in CPVT2 and FFD, respectively. In CPVT2, mitochondria took up more Ca in permeabilized cells, and had higher level of mCa content in intact cells vs. FFD. Conditional ablation of MCU in the CPVT2 model caused lethality and cardiac remodelling, but reduced arrhythmias in the FFD model. In parallel, CPVT2 mitochondria also employ up-regulated mPTP-mediated Ca efflux to avoid mCa overload, as seen by elevated incidence of MitoWinks (an indicator of mPTP-mediated Ca efflux) vs. FFD. Both pharmacological and genetic inhibition of mPTP promoted mtROS production and exacerbation of myocyte Ca handling in CPVT2. Further, genetic inhibition of mPTP exacerbated arrhythmias in CPVT2. CONCLUSION: In contrast to FFD, which is more susceptible to mtROS-dependent RyR2 leak, in CPVT2 mitochondria buffer SR-derived DCR to mitigate Ca-dependent pathological remodelling and rely on mPTP-mediated Ca efflux to avoid mCa overload. SR-mitochondria interplay contributes to the divergent pathologies by disparately shaping intracellular Ca signalling.


Assuntos
Retículo Sarcoplasmático , Taquicardia Ventricular , Animais , Camundongos , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Frutose , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/genética , Poro de Transição de Permeabilidade Mitocondrial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...