Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 100(3): e02589, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30801709

RESUMO

Forest dynamics and tree species composition vary substantially between Paleotropical and Neotropical forests, but these broad biogeographic regions are treated uniformly in many land models. To assess whether these regional differences translate into variation in productivity and carbon (C) storage, we compiled a database of climate, tree stem growth, litterfall, aboveground net primary production (ANPP), and aboveground biomass across tropical rainforest sites spanning 33 countries throughout Central and South America, Asia, and Australasia, but excluding Africa due to a paucity of available data. Though the sum of litterfall and stem growth (ANPP) did not differ between regions, both stem growth and the ratio of stem growth to litterfall were higher in Paleotropical forests compared to Neotropical forests across the full observed range of ANPP. Greater C allocation to woody growth likely explains the much larger aboveground biomass estimates in Paleotropical forests (~29%, or ~80 Mg DW/ha, greater than in the Neotropics). Climate was similar in Paleo- and Neotropical forests, thus the observed differences in C likely reflect differences in the evolutionary history of species and forest structure and function between regions. Our analysis suggests that Paleotropical forests, which can be dominated by tall-statured Dipterocarpaceae species, may be disproportionate hotspots for aboveground C storage. Land models typically treat these distinct tropical forests with differential structures as a single functional unit, but our findings suggest that this may overlook critical biogeographic variation in C storage potential among regions.


Assuntos
Florestas , Clima Tropical , África , Ásia , Biomassa , Carbono/análise , América do Sul , Árvores
2.
Ecology ; 99(9): 2080-2089, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29931744

RESUMO

Tropical forests exhibit significant heterogeneity in plant functional and chemical traits that may contribute to spatial patterns of key soil biogeochemical processes, such as carbon storage and greenhouse gas emissions. Although tropical forests are the largest ecosystem source of nitrous oxide (N2 O), drivers of spatial patterns within forests are poorly resolved. Here, we show that local variation in canopy foliar N, mapped by remote-sensing image spectroscopy, correlates with patterns of soil N2 O emission from a lowland tropical rainforest. We identified ten 0.25 ha plots (assemblages of 40-70 individual trees) in which average remotely-sensed canopy N fell above or below the regional mean. The plots were located on a single minimally-dissected terrace (<1 km2 ) where soil type, vegetation structure and climatic conditions were relatively constant. We measured N2 O fluxes monthly for 1 yr and found that high canopy N species assemblages had on average three-fold higher total mean N2 O fluxes than nearby lower canopy N areas. These differences are consistent with strong differences in litter stoichiometry, nitrification rates and soil nitrate concentrations. Canopy N status was also associated with microbial community characteristics: lower canopy N plots had two-fold greater soil fungal to bacterial ratios and a significantly lower abundance of ammonia-oxidizing archaea, although genes associated with denitrification (nirS, nirK, nosZ) showed no relationship with N2 O flux. Overall, landscape emissions from this ecosystem are at the lowest end of the spectrum reported for tropical forests, consist with multiple metrics indicating that these highly productive forests retain N tightly and have low plant-available losses. These data point to connections between canopy and soil processes that have largely been overlooked as a driver of denitrification. Defining relationships between remotely-sensed plant traits and soil processes offers the chance to map these processes at large scales, potentially increasing our ability to predict N2 O emissions in heterogeneous landscapes.


Assuntos
Nitrogênio/análise , Óxido Nitroso , Ecossistema , Floresta Úmida , Solo/química
3.
Ecol Lett ; 20(6): 779-788, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28414883

RESUMO

Tropical forests dominate global terrestrial carbon (C) exchange, and recent droughts in the Amazon Basin have contributed to short-term declines in terrestrial carbon dioxide uptake and storage. However, the effects of longer-term climate variability on tropical forest carbon dynamics are still not well understood. We synthesised field data from more than 150 tropical forest sites to explore how climate regulates tropical forest aboveground net primary productivity (ANPP) and organic matter decomposition, and combined those data with two existing databases to explore climate - C relationships globally. While previous analyses have focused on the effects of either temperature or rainfall on ANPP, our results highlight the importance of interactions between temperature and rainfall on the C cycle. In cool forests (< 20 °C), high rainfall slowed rates of C cycling, but in warm tropical forests (> 20 °C) it consistently enhanced both ANPP and decomposition. At the global scale, our analysis showed an increase in ANPP with rainfall in relatively warm sites, inconsistent with declines in ANPP with rainfall reported previously. Overall, our results alter our understanding of climate - C cycle relationships, with high precipitation accelerating rates of C exchange with the atmosphere in the most productive biome on earth.


Assuntos
Ciclo do Carbono , Temperatura , Clima Tropical , Carbono , Florestas , Solo , Árvores
4.
New Phytol ; 214(4): 1506-1517, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28262951

RESUMO

We hypothesized that dinitrogen (N2 )- and non-N2 -fixing tropical trees would have distinct phosphorus (P) acquisition strategies allowing them to exploit different P sources, reducing competition. We measured root phosphatase activity and arbuscular mycorrhizal (AM) colonization among two N2 - and two non-N2 -fixing seedlings, and grew them alone and in competition with different inorganic and organic P forms to assess potential P partitioning. We found an inverse relationship between root phosphatase activity and AM colonization in field-collected seedlings, indicative of a trade-off in P acquisition strategies. This correlated with the predominantly exploited P sources in the seedling experiment: the N2 fixer with high N2 fixation and root phosphatase activity grew best on organic P, whereas the poor N2 fixer and the two non-N2 fixers with high AM colonization grew best on inorganic P. When grown in competition, however, AM colonization, root phosphatase activity and N2 fixation increased in the N2 fixers, allowing them to outcompete the non-N2 fixers regardless of P source. Our results indicate that some tropical trees have the capacity to partition soil P, but this does not eliminate interspecific competition. Rather, enhanced P and N acquisition strategies may increase the competitive ability of N2 fixers relative to non-N2 fixers.


Assuntos
Fósforo/metabolismo , Floresta Úmida , Solo/química , Árvores/fisiologia , Costa Rica , Fabaceae/fisiologia , Moraceae/fisiologia , Micorrizas , Fixação de Nitrogênio , Monoéster Fosfórico Hidrolases/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plântula/fisiologia , Especificidade da Espécie , Clima Tropical
5.
Ecol Appl ; 26(8): 2449-2462, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27874999

RESUMO

Distributions of foliar nutrients across forest canopies can give insight into their plant functional diversity and improve our understanding of biogeochemical cycling. We used airborne remote sensing and partial least squares regression to quantify canopy foliar nitrogen (foliar N) across ~164 km2 of wet lowland tropical forest in the Osa Peninsula, Costa Rica. We determined the relative influence of climate and topography on the observed patterns of foliar N using a gradient boosting model technique. At a local scale, where climate and substrate were constant, we explored the influence of slope position on foliar N by quantifying foliar N on remnant terraces, their adjacent slopes, and knife-edged ridges. In addition, we climbed and sampled 540 trees and analyzed foliar N in order to quantify the role of species identity (phylogeny) and environmental factors in predicting foliar N. Observed foliar N heterogeneity reflected environmental factors working at multiple spatial scales. Across the larger landscape, elevation and precipitation had the highest relative influence on predicting foliar N (30% and 24%), followed by soils (15%), site exposure (9%), compound topographic index (8%), substrate (6%), and landscape dissection (6%). Phylogeny explained ~75% of the variation in the field collected foliar N data, suggesting that phylogeny largely underpins the response to the environmental factors. Taken together, these data suggest that a large fraction of the variance in foliar N across the landscape is proximately driven by species composition, though ultimately this is likely a response to abiotic factors such as climate and topography. Future work should focus on the mechanisms and feedbacks involved, and how shifts in climate may translate to changes in forest function.


Assuntos
Nitrogênio , Folhas de Planta , Costa Rica , Florestas , Árvores , Clima Tropical
6.
Ecol Evol ; 6(15): 5158-68, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27551373

RESUMO

Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7- to 8-year-old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50-m plots in four former pasture sites in southern Costa Rica: plantation - trees planted throughout the plot; applied nucleation/islands - trees planted in patches of different sizes; and natural regeneration - no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition. Synthesis and applications: The less resource-intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes.

7.
J Anim Ecol ; 85(3): 817-28, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26919319

RESUMO

Despite growing evidence that parasites often alter nutrient flows through their hosts and can comprise a substantial amount of biomass in many systems, whether endemic parasites influence ecosystem nutrient cycling, and which nutrient pathways may be important, remains conjectural. A framework to evaluate how endemic parasites alter nutrient cycling across varied ecosystems requires an understanding of the following: (i) parasite effects on host nutrient excretion; (ii) ecosystem nutrient limitation; (iii) effects of parasite abundance, host density, host functional role and host excretion rate on nutrient flows; and (iv) how this infection-induced nutrient flux compares to other pools and fluxes. Pathogens that significantly increase the availability of a limiting nutrient within an ecosystem should produce a measurable ecosystem-scale response. Here, we combined field-derived estimates of trematode parasite infections in aquatic snails with measurements of snail excretion and tissue stoichiometry to show that parasites are capable of altering nutrient excretion in their intermediate host snails (dominant grazers). We integrated laboratory measurements of host nitrogen excretion with field-based estimates of infection in an ecosystem model and compared these fluxes to other pools and fluxes of nitrogen as measured in the field. Eighteen nitrogen-limited ponds were examined to determine whether infection had a measurable effect on ecosystem-scale nitrogen cycling. Because of their low nitrogen content and high demand for host carbon, parasites accelerated the rate at which infected hosts excreted nitrogen to the water column in a dose-response manner, thereby shifting nutrient stoichiometry and availability at the ecosystem scale. Infection-enhanced fluxes of dissolved inorganic nitrogen were similar to other commonly important environmental sources of bioavailable nitrogen to the system. Additional field measurements within nitrogen-limited ponds indicated that nitrogen flux rates from the periphyton to the water column in high-snail density/high-infection ponds were up to 50% higher than low-infection ponds. By altering host nutrient assimilation/excretion flexibility, parasites could play a widespread, but currently unrecognized, role in ecosystem nutrient cycling, especially when parasite and host abundances are high and hosts play a central role in ecosystem nutrient cycling.


Assuntos
Ecossistema , Ciclo do Nitrogênio , Caramujos/metabolismo , Caramujos/parasitologia , Trematódeos/metabolismo , Animais , Biomassa , Colorado , Lagoas , Infecções por Trematódeos/fisiopatologia
8.
ISME J ; 10(5): 1147-56, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26565722

RESUMO

Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution.


Assuntos
Bactérias/genética , Microbiologia do Solo , Óperon de RNAr/genética , Colorado , Ecossistema , Dosagem de Genes , Óperon , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , Solo , Processos Estocásticos
9.
Ecology ; 96(5): 1229-41, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26236837

RESUMO

Observations of high dissolved inorganic nitrogen (DIN) concentrations in stream water have reinforced the notion that primary tropical rain forests cycle nitrogen (N) in relative excess compared to phosphorus. Here we test this notion by evaluating hydrologic N export from a small watershed on the Osa Peninsula, Costa Rica, where prior research has shown multiple indicators of conservative N cycling throughout the ecosystem. We repeatedly measured a host of factors known to influence N export for one year, including stream water chemistry and upslope litterfall, soil N availability and net N processing rates, and soil solution chemistry at the surface, 15- and 50-cm depths. Contrary to prevailing assumptions about the lowland N cycle, we find that dissolved organic nitrogen (DON) averaged 85% of dissolved N export for 48 of 52 consecutive weeks. For most of the year stream water nitrate (NO3-) export was very low, which reflected minimal net N processing and DIN leaching from upslope soils. Yet, for one month in the dry season, NO3- was the major component of N export due to a combination of low flows and upslope nitrification that concentrated NO3- in stream water. Particulate organic N (PON) export was much larger than dissolved forms at 14.6 kg N x ha(-1) x yr(-1), driven by soil erosion during storms. At this rate, PON export was slightly greater than estimated inputs from free-living N fixation and atmospheric N deposition, which suggests that erosion-driven PON export could constrain ecosystem level N stocks over longer timescales. This phenomenon is complimentary to the "DON leak" hypothesis, which postulates that the long-term accumulation of ecosystem N in unpolluted ecosystems is constrained by the export of organic N independently of biological N demand. Using an established global sediment generation model, we illustrate that PON erosion may be an important vector for N loss in tropical landscapes that are geomorphically active. This study supports an emerging view that landscape geomorphology influences nutrient biogeochemistry and limitation, though more research is needed to understand the mechanisms and spatial significance of erosional N loss from terrestrial ecosystems.


Assuntos
Ecossistema , Nitrogênio/química , Clima Tropical , Movimentos da Água , Animais , Costa Rica , Sedimentos Geológicos , Chuva , Estações do Ano , Solo/química , Fatores de Tempo
10.
PLoS One ; 10(6): e0126748, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26061884

RESUMO

Tropical forests store large amounts of carbon in tree biomass, although the environmental controls on forest carbon stocks remain poorly resolved. Emerging airborne remote sensing techniques offer a powerful approach to understand how aboveground carbon density (ACD) varies across tropical landscapes. In this study, we evaluate the accuracy of the Carnegie Airborne Observatory (CAO) Light Detection and Ranging (LiDAR) system to detect top-of-canopy tree height (TCH) and ACD across the Osa Peninsula, Costa Rica. LiDAR and field-estimated TCH and ACD were highly correlated across a wide range of forest ages and types. Top-of-canopy height (TCH) reached 67 m, and ACD surpassed 225 Mg C ha-1, indicating both that airborne CAO LiDAR-based estimates of ACD are accurate in tall, high-biomass forests and that the Osa Peninsula harbors some of the most carbon-rich forests in the Neotropics. We also examined the relative influence of lithologic, topoedaphic and climatic factors on regional patterns in ACD, which are known to influence ACD by regulating forest productivity and turnover. Analyses revealed a spatially nested set of factors controlling ACD patterns, with geologic variation explaining up to 16% of the mapped ACD variation at the regional scale, while local variation in topographic slope explained an additional 18%. Lithologic and topoedaphic factors also explained more ACD variation at 30-m than at 100-m spatial resolution, suggesting that environmental filtering depends on the spatial scale of terrain variation. Our result indicate that patterns in ACD are partially controlled by spatial variation in geologic history and geomorphic processes underpinning topographic diversity across landscapes. ACD also exhibited spatial autocorrelation, which may reflect biological processes that influence ACD, such as the assembly of species or phenotypes across the landscape, but additional research is needed to resolve how abiotic and biotic factors contribute to ACD variation across high biomass, high diversity tropical landscapes.


Assuntos
Carbono/metabolismo , Florestas , Costa Rica , Tecnologia de Sensoriamento Remoto
12.
Ecol Lett ; 17(10): 1282-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25070023

RESUMO

Paradoxically, symbiotic dinitrogen (N2 ) fixers are abundant in nitrogen (N)-rich, phosphorus (P)-poor lowland tropical rain forests. One hypothesis to explain this pattern states that N2 fixers have an advantage in acquiring soil P by producing more N-rich enzymes (phosphatases) that mineralise organic P than non-N2 fixers. We assessed soil and root phosphatase activity between fixers and non-fixers in two lowland tropical rain forest sites, but also addressed the hypothesis that arbuscular mycorrhizal (AM) colonisation (another P acquisition strategy) is greater on fixers than non-fixers. Root phosphatase activity and AM colonisation were higher for fixers than non-fixers, and strong correlations between AM colonisation and N2 fixation at both sites suggest that the N-P interactions mediated by fixers may generally apply across tropical forests. We suggest that phosphatase enzymes and AM fungi enhance the capacity of N2 fixers to acquire soil P, thus contributing to their high abundance in tropical forests.


Assuntos
Florestas , Micorrizas/fisiologia , Fixação de Nitrogênio , Fósforo/metabolismo , Raízes de Plantas/enzimologia , Solo/química , Costa Rica , Monoéster Fosfórico Hidrolases/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Clima Tropical
13.
Ecol Appl ; 24(4): 750-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24988773

RESUMO

Secondary and managed plantation forests comprise a rapidly increasing portion of the humid tropical forest biome, a region that, in turn, is a major source of nitrous oxide (N2O) emissions to the atmosphere. Previous work has demonstrated reduced N2O emissions in regenerating secondary stands compared to mature forests, yet the importance of species composition in regulating N2O production in young forests remains unclear. We measured N2O fluxes beneath four native tree species planted in replicated, 21-yr-old monodominant stands in the Caribbean lowlands of Costa Rica in comparison with nearby mature forest and abandoned pasture sites at two time points (wetter and drier seasons). We found that species differed eight-fold in their production of N2O, with slower growing, late-successional species (including one legume) promoting high N2O fluxes similar to mature forest, and faster growing, early successional species maintaining low N2O fluxes similar to abandoned pasture. Across all species, N2O flux was positively correlated with soil nitrate concentration in the wetter season and with soil water-filled pore space (WFPS) in the drier season. However, the strongest predictor of N2O fluxes was fine-root growth rate, which was negatively correlated with N2O emissions at both time points. We suggest that tree-specific variation in growth habits creates differences in both N demand and soil water conditions that may exert significant control on N2O fluxes from tropical forests. With the advent of REDD+ and related strategies for fostering climate mitigation via tropical forest regrowth and plantations, we note that species-specific traits as they relate to N2O fluxes may be an important consideration in estimating overall climate benefits.


Assuntos
Agricultura , Óxido Nitroso/metabolismo , Árvores/fisiologia , Clima Tropical , Biodiversidade , Costa Rica , Raízes de Plantas/crescimento & desenvolvimento , Chuva , Estações do Ano , Solo , Árvores/crescimento & desenvolvimento , Água
14.
Ecology ; 95(3): 668-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24804451

RESUMO

Quantifying nutrient limitation of primary productivity is a fundamental task of terrestrial ecosystem ecology, but in a high carbon dioxide environment it is even more critical that we understand potential nutrient constraints on plant growth. Ecologists often manipulate nutrients with fertilizer to assess nutrient limitation, yet for a variety of reasons, nutrient fertilization experiments are either impractical or incapable of resolving ecosystem responses to some global changes. The challenges of conducting large, in situ fertilization experiments are magnified in forests, especially the high-diversity forests common throughout the lowland tropics. A number of methods, including fertilization experiments, could be seen as tools in a toolbox that ecologists may use to attempt to assess nutrient limitation, but there has been no compilation or synthetic discussion of those methods in the literature. Here, we group these methods into one of three categories (indicators of soil nutrient supply, organismal indicators of nutrient limitation, and lab-based experiments and nutrient depletions), and discuss some of the strengths and limitations of each. Next, using a case study, we compare nutrient limitation assessed using these methods to results obtained using large-scale fertilizations across the Hawaiian Archipelago. We then explore the application of these methods in high-diversity tropical forests. In the end, we suggest that, although no single method is likely to predict nutrient limitation in all ecosystems and at all scales, by simultaneously utilizing a number of the methods we describe, investigators may begin to understand nutrient limitation in complex and diverse ecosystems such as tropical forests. In combination, these methods represent our best hope for understanding nutrient constraints on the global carbon cycle, especially in tropical forest ecosystems.


Assuntos
Ecossistema , Fertilizantes , Solo , Árvores , Animais , Monitoramento Ambiental , Havaí , Projetos de Pesquisa , Fatores de Tempo , Clima Tropical
15.
PLoS One ; 9(5): e95757, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24824838

RESUMO

Primary production in freshwater ecosystems is often limited by the availability of phosphorus (P), nitrogen (N), or a combination of both (NP co-limitation). While N fixation via heterocystous cyanobacteria can supply additional N, no comparable mechanism for P exists; hence P is commonly considered to be the predominant and ultimate limiting nutrient in freshwater ecosystems. However, N limitation can be maintained if P is supplied in stoichiometric excess of N (including N fixation). The main objective of this study was to examine patterns in nutrient limitation across a series of 21 vernal ponds in Eastern Colorado where high P fluxes are common. Across all ponds, water column dissolved inorganic N steadily decreased throughout the growth season due to biological demand while total dissolved P remained stable. The water column dissolved inorganic N to total dissolved P ratios suggested a transition from NP co-limitation to N limitation across the growth season. Periphyton and phytoplankton %C was strongly correlated with %N while %P was assimilated in excess of %N and %C in many ponds. Similarly, in nutrient addition bottle assays algae responded more strongly to N additions (11 out of 18 water bodies) than P additions (2 out of 18 water bodies) and responded most strongly when N and P were added in concert (12 out of 18 water bodies). Of the ponds that responded to nutrient addition, 92% exhibited some sort of N limitation while less than 8% were limited by P alone. Despite multiple lines of evidence for N limitation or NP co-limitation, N fixation rates were uniformly low across most ponds, most likely due to inhibition by water column nitrate. Within this set of 18 water bodies, N limitation or NP co-limitation is widespread due to the combination high anthropogenic P inputs and constrained N fixation rates.


Assuntos
Cianobactérias/efeitos dos fármacos , Nitrogênio/análise , Fitoplâncton/efeitos dos fármacos , Lagoas/química , Colorado , Cianobactérias/crescimento & desenvolvimento , Ecossistema , Nitrogênio/farmacologia , Fixação de Nitrogênio/efeitos dos fármacos , Fósforo/análise , Fósforo/farmacologia , Fitoplâncton/crescimento & desenvolvimento
16.
Proc Natl Acad Sci U S A ; 111(22): 8101-6, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843146

RESUMO

Biological nitrogen fixation (BNF) is the largest natural source of exogenous nitrogen (N) to unmanaged ecosystems and also the primary baseline against which anthropogenic changes to the N cycle are measured. Rates of BNF in tropical rainforest are thought to be among the highest on Earth, but they are notoriously difficult to quantify and are based on little empirical data. We adapted a sampling strategy from community ecology to generate spatial estimates of symbiotic and free-living BNF in secondary and primary forest sites that span a typical range of tropical forest legume abundance. Although total BNF was higher in secondary than primary forest, overall rates were roughly five times lower than previous estimates for the tropical forest biome. We found strong correlations between symbiotic BNF and legume abundance, but we also show that spatially free-living BNF often exceeds symbiotic inputs. Our results suggest that BNF in tropical forest has been overestimated, and our data are consistent with a recent top-down estimate of global BNF that implied but did not measure low tropical BNF rates. Finally, comparing tropical BNF within the historical area of tropical rainforest with current anthropogenic N inputs indicates that humans have already at least doubled reactive N inputs to the tropical forest biome, a far greater change than previously thought. Because N inputs are increasing faster in the tropics than anywhere on Earth, both the proportion and the effects of human N enrichment are likely to grow in the future.


Assuntos
Ecossistema , Fabaceae/metabolismo , Ciclo do Nitrogênio , Fixação de Nitrogênio , Árvores , Agricultura , Biomassa , Costa Rica , Meio Ambiente , Atividades Humanas , Humanos , Modelos Teóricos , Simbiose , Clima Tropical
18.
ISME J ; 7(6): 1102-11, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23407312

RESUMO

Although recent work has shown that both deterministic and stochastic processes are important in structuring microbial communities, the factors that affect the relative contributions of niche and neutral processes are poorly understood. The macrobiological literature indicates that ecological disturbances can influence assembly processes. Thus, we sampled bacterial communities at 4 and 16 weeks following a wildfire and used null deviation analysis to examine the role that time since disturbance has in community assembly. Fire dramatically altered bacterial community structure and diversity as well as soil chemistry for both time-points. Community structure shifted between 4 and 16 weeks for both burned and unburned communities. Community assembly in burned sites 4 weeks after fire was significantly more stochastic than in unburned sites. After 16 weeks, however, burned communities were significantly less stochastic than unburned communities. Thus, we propose a three-phase model featuring shifts in the relative importance of niche and neutral processes as a function of time since disturbance. Because neutral processes are characterized by a decoupling between environmental parameters and community structure, we hypothesize that a better understanding of community assembly may be important in determining where and when detailed studies of community composition are valuable for predicting ecosystem function.


Assuntos
Bactérias/classificação , Incêndios , Microbiologia do Solo , Bactérias/genética , Biodiversidade , Ecossistema , Solo/química , Processos Estocásticos , Árvores/microbiologia
19.
New Phytol ; 196(1): 173-180, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22882279

RESUMO

• Nutrient resorption is a fundamental process through which plants withdraw nutrients from leaves before abscission. Nutrient resorption patterns have the potential to reflect gradients in plant nutrient limitation and to affect a suite of terrestrial ecosystem functions. • Here, we used a stoichiometric approach to assess patterns in foliar resorption at a variety of scales, specifically exploring how N : P resorption ratios relate to presumed variation in N and/or P limitation and possible relationships between N : P resorption ratios and soil nutrient availability. • N : P resorption ratios varied significantly at the global scale, increasing with latitude and decreasing with mean annual temperature and precipitation. In general, tropical sites (absolute latitudes < 23°26') had N : P resorption ratios of < 1, and plants growing on highly weathered tropical soils maintained the lowest N : P resorption ratios. Resorption ratios also varied with forest age along an Amazonian forest regeneration chronosequence and among species in a diverse Costa Rican rain forest. • These results suggest that variations in N : P resorption stoichiometry offer insight into nutrient cycling and limitation at a variety of spatial scales, complementing other metrics of plant nutrient biogeochemistry. The extent to which the stoichiometric flexibility of resorption will help regulate terrestrial responses to global change merits further investigation.


Assuntos
Ecossistema , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/metabolismo , Brasil , Chuva , Solo , Especificidade da Espécie , Temperatura , Árvores/metabolismo , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...