Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(12): e0225365, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31821330

RESUMO

Herpes Simplex Virus Type 2 (HSV-2) is a common human pathogen that causes life-long illness. The US prevalence of HSV-2 infection is 11.9% for individuals between 15 and 49 years of age. Individuals with HSV-2 infection are more likely to contract and spread other sexually-transmitted infections. Eighty percent of individuals with HSV-2 are unaware of their infection, in part because of the social stigma associated with in-clinic testing for sexually-transmitted infections. We conducted an initial evaluation of a prototype smartphone-based serological lateral-flow immunoassay (LFA) for HSV-2 infection that uses strontium aluminate persistent luminescent nanoparticles (nanophosphors) as reporters. When applied to a test panel of 21 human plasma/serum samples varying in anti-HSV titer, the nanophosphor HSV-2 LFA had 96.7% sensitivity and 100% specificity for detection of HSV-2 infection. The sensitivity of the nanophosphor HSV-2 LFA was higher than that of commercially-available rapid HSV-2 assays tested with the same panel. Analysis of the iPhone nanophosphor HSV-2 LFA strip images with our custom smartphone app gave greater reproducibility compared to ImageJ analysis of strip images. The smartphone-based nanophosphor LFA technology shows promise for private self-testing for sexually-transmitted infections (STI).


Assuntos
Herpes Simples/diagnóstico , Herpesvirus Humano 2/imunologia , Imunoensaio , Autoavaliação Diagnóstica , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Lab Chip ; 17(6): 1051-1059, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28154873

RESUMO

Through their computational power and connectivity, smartphones are poised to rapidly expand telemedicine and transform healthcare by enabling better personal health monitoring and rapid diagnostics. Recently, a variety of platforms have been developed to enable smartphone-based point-of-care testing using imaging-based readout with the smartphone camera as the detector. Fluorescent reporters have been shown to improve the sensitivity of assays over colorimetric labels, but fluorescence readout necessitates incorporating optical hardware into the detection system, adding to the cost and complexity of the device. Here we present a simple, low-cost smartphone-based detection platform for highly sensitive luminescence imaging readout of point-of-care tests run with persistent luminescent phosphors as reporters. The extremely bright and long-lived emission of persistent phosphors allows sensitive analyte detection with a smartphone by a facile time-gated imaging strategy. Phosphors are first briefly excited with the phone's camera flash, followed by switching off the flash, and subsequent imaging of phosphor luminescence with the camera. Using this approach, we demonstrate detection of human chorionic gonadotropin using a lateral flow assay and the smartphone platform with strontium aluminate nanoparticles as reporters, giving a detection limit of ≈45 pg mL-1 (1.2 pM) in buffer. Time-gated imaging on a smartphone can be readily adapted for sensitive and potentially quantitative testing using other point-of-care formats, and is workable with a variety of persistent luminescent materials.


Assuntos
Processamento de Imagem Assistida por Computador/instrumentação , Substâncias Luminescentes/química , Medições Luminescentes , Smartphone , Gonadotropina Coriônica/urina , Desenho de Equipamento , Humanos , Limite de Detecção , Substâncias Luminescentes/análise , Medições Luminescentes/economia , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Testes Imediatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...